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Abstract

In recent years, one-class classification (OCC) has been an area of extensive re-

search for outlier or anomaly detection. OCC [1, 2, 3, 4] is different from conventional

classification techniques. The conventional classification methods aim to classify the

available data samples into one of many predetermined classes. However, OCC aims to

predict whether a data sample belongs to the target class (or normal or positive class).

The training is done using samples of only the target class. The samples that don’t

belong to the target class are termed as outliers. The approaches followed in OCC

can be broadly classified [5, 6] into (i) Boundary framework-based (ii) Reconstruction

framework-based (iii) Density framework-based. In the boundary framework-based ap-

proach, a one-class classifier tries to learn a boundary around the target class. In the

reconstruction framework-based approach, the model utilizes the deviation in recon-

struction error to differentiate the target class and outliers. In the density framework-

based approach, assumptions are made regarding the density distribution of the data,

and a threshold is set based on the density to identify the target class. In the thesis, we

have utilized boundary and reconstruction-based approaches, and leveraged variance

minimization to develop kernel regularized least-squares (KRL) based methods for

OCC. The variance minimization helps to minimize the data dispersion of the target

class and improves the generalization performance of the classifier. Variance mini-

mization has been extensively used by researchers to develop binary [7, 8, 9] as well

as multi-class [10, 11, 12] classifiers. Further, Mygdalis et. al. [13] exploited variance

minimization to develop a boundary framework-based one-class classifier with kernel

extreme learning machine at its base. However, variance minimization has not been

explored for reconstruction framework-based KRL one-class classifiers in the past.

In this thesis, we propose two methods to leverage variance minimization for re-

construction and boundary framework-based KRL one-class classifiers. Both methods

combine kernel learning and representation learning and utilize kernel autoencoders

to learn essential information from the input data. The first method explores variance

minimization for a reconstruction framework-based approach to OCC in a single-layer
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approach. In the second method, we have a multi-layer architecture composed of mul-

tiple reconstruction framework-based layers and a final boundary framework-based

layer. We have utilized variance minimization at the first layer and used the bound-

ary framework-based approach for OCC at the final layer. The contributions of this

thesis involve the development of minimum variance KRL-based one-class classifiers

by leveraging reconstruction and boundary frameworks in single-layer and multi-layer

architectures. We meticulously analyze the performance of all the proposed meth-

ods and compare it with various state-of-the-art one-class classifiers using different

performance evaluation criteria.

Keywords: Variance Minimization, One-Class Classification (OCC), Reconstruc-

tion Framework, Boundary Framework, Kernel Regularized Least-Squares (KRL).
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Chapter 1

Introduction

Classification has been a frequently discussed problem for many decades. The

type of classification can be binary, multi-class or one-class classification (OCC). In

binary or multi-class classification, the aim of the classifier is to classify each sample

into one of the many (or two for a binary classifier) predetermined classes. However,

in OCC the samples of only one class is available in prior, and the challenge is to

determine the classifying criteria for the samples of other unidentified classes using

the information of only the given class. In the past, OCC has been frequently applied

in various disciplines for novelty or outlier detection [14, 15, 16, 17, 18].

In this thesis, the focus is on OCC, where the task is to classify a sample as genuine

or outlier. The class comprising of genuine samples is called the target (positive or

normal) class, and the class comprising of outlier samples is called the outlier (negative

or anomalous) class.

1.1 Background

In the traditional (binary or multi-class) classification, every sample is bound to be

classified in one of the predefined classes. However, an issue arises when a test sample

that doesn’t belong to either of the predefined classes is encountered. Consider an

example of a binary classifier that is trained to classify the samples into apples and

mangoes. Even if the test sample is from a completely different domain, e.g., a cat, the
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classifier will always classify it as an apple or a mango, which is wrong in both cases.

Hence, sometimes the task is not to allocate a test sample into one of the predefined

classes but to decide if it belongs to a particular class. This brings the need for OCC.

The OCC problem fundamentally differs from the traditional (binary or multi-

class) classification problem [5]. In binary classification, the information from the

available samples of the two classes is used to construct a decision boundary during

training. But, in OCC, it is assumed that the samples of only the target class are

available during training. The objective is to construct a discrimination boundary

around the target class such that it accepts as many target class objects as possi-

ble while minimizing the probability of accepting the outliers. Since OCC uses the

information from only the target class, it is a challenge to determine how tight the

boundary should fit in each of the directions around the target data. This makes the

problem of OCC more challenging than the traditional binary classification problem.

Generally, OCC is helpful in cases where the samples of the target class are abundant,

but the other class has very few or no samples. There can be various reasons for the

unavailability of data, like the difficulty of collection, high computational cost, infre-

quent event, lack of reproducibility, etc. OCC is particularly helpful for real-world

scenarios, where collecting data for the outlier (or negative) class is much more diffi-

cult and expensive than the normal (or positive) class due to various reasons described

previously. We provide cases of such real-world scenarios where OCC is quite helpful.

One scenario is the detection of faults in a machine [19]. A classifier should be able to

detect when a machine is showing irregular/faulty behavior. It is easy to gather data

on normal working (positive class) of a machine. However, it is quite difficult to have

sufficient data on the faulty behavior (negative class) as most of the faults may not

have surfaced already. Additionally, we cannot wait for the faults to occur as it may

involve high expense, danger to human operators, or machine malfunction. Another

situation is identifying if a person is healthy or not [20]. In such a case, collecting

data for a healthy case is quite easy as the characteristics of all the healthy persons

are quite similar. However, it is quite difficult to collect information about all the

unhealthy cases (negative class) in the world. In such a case, a classifier needs to be
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trained using the healthy (positive) class samples only, for which a one-class classifier

is the best-suited solution as it needs samples of only one class. Building intrusion

detection [21] systems for large secured networks is a well-known problem. It is quite

easy to collect data on the everyday normal behavior of a network. However, it is

impossible to collect data on every intrusion attack as the signature of not all the

attacks are known. In such a case, a one-class classifier can be used to design an

anomaly-based intrusion detection system, which leverages the normal behavior of a

network to identify any new attack. Additionally, OCC has been applied to other

real-world scenarios such as authorship verification [22], document classification [23],

video surveillance [24, 25], fabric defect detection [26], and fMRI response [27].

The earliest work on OCC can be recorded back to Minter [28], who used the

term ‘single-class classification’ to describe the learning of a Bayes classifier using

labeled data from only the class of interest. Later, Moya et al. [29] originated the

term ‘one-class classification’ in reference to the application of the classifier for target

recognition. Over the years, other terms such as Novelty Detection [30], Outlier Detec-

tion [31], or Concept Learning [32] have been used as a result of different applications

of OCC. Japkowicz [32] proposed an auto-association-based approach for OCC, which

is a neural network-based approach and termed it as ‘concept learning in the absence

of counterexamples’. In the same year, kernel-based one-class classifiers were pro-

posed [1, 33]. The kernel-based one-class classifiers can be broadly classified into two

categories[5]: (i) reconstruction-based (ii) boundary-based. The reconstruction-based

one-class classifiers try to reconstruct the input data at the output layer while keeping

the essential information intact. The classification is performed based on the deviation

in reconstruction error between the target and outlier data. Hoffmann [34] proposed

a reconstruction-based one-class classifier leveraging the kernel principal component

analysis as the base method. The boundary-based one-class classifiers aim to construct

a boundary using the structure of the data. Schölkopf et al. [1] proposed one-class

support vector machine (OCSVM) and Tax and Duin [35, 33] proposed support vector

data description (SVDD). Both methods are boundary-based one-class classifiers with

support vector machine (SVM) as a base method. The SVM-based classifiers are com-
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putationally expensive owing to their iterative nature of learning. Choi [36] and Leng

et al. [37] further addressed this issue by proposing a least-squares-based one-class

classifier with the least-squares SVM and kernel extreme learning machine (KELM)

at the base, respectively. The KELM-based one-class classifier is further enabled with

minimum variance embedding within its optimization problem [13]. Gautam et al.

proposed a kernel learning-based autoencoder for OCC that detects outliers using the

deviation in reconstruction error. Dai et al. [38] proposed a multi-layer KELM-based

one-class classifier that leverages multiple reconstruction-based layers to minimize the

reconstruction error, followed by a final OCC layer.

1.2 Motivation

A usual approach in OCC is to define a discrimination boundary around the target

class data. However, the more data points spread out, the more difficult it becomes

to determine how tight the boundary should fit in each of the directions. Over the

years, efforts have been made to minimize the data dispersion in order to improve the

efficiency of different one-class classifiers. Since variance is a measure of how far a

dataset is spread out, variance minimization has shown promising results for different

machine learning tasks. Researchers have applied variance minimization for binary

[8, 9] as well as multi-class classification [10, 11]. Variance minimization has also been

applied for OCC in the past [13] by developing a KELM-based one-class classifier

that utilized minimum variance information for a boundary-based approach to OCC.

However, variance minimization has not been explored for a reconstruction-based ap-

proach to OCC in the past. In this thesis, we venture to explore minimum variance

embedding for a reconstruction-based approach to OCC. Hence, we propose mini-

mum variance embedded single-layer and multi-layer one-class classifiers that utilizes

both reconstruction and boundary-based frameworks by considering kernel regularized

least-squares (KRL) as a base classifier.
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1.3 Objectives

In this thesis, we aim to achieve the following objectives:

(1) To leverage minimum variance embedding to develop a reconstruction-based one-

class classifier using kernel learning.

(2) To develop a model that utilizes the minimum variance embedding to minimize the

data dispersion, and combine the advantages of the reconstruction-based frame-

work and the boundary-based OCC approach in a single architecture.

(3) To explore the effectiveness of the proposed method for the identification of

Alzheimer’s and Breast Cancer diseases.

1.4 Thesis Contributions

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

Contribution I: Minimum Variance Embedded Auto-associative KRL-based

Method for One-class Classification

The variance minimization helps to take advantage of the underlying structural

information of the data, leading to better classification. In the past, variance mini-

mization was explored for kernel learning-based OCC following the boundary-based

approach [13]. In this thesis, we have explored variance minimization by embedding

minimum variance information in a reconstruction-based one-class classifier by devel-

oping the minimum variance embedded auto-associative KRL-based one-class classifier

(VAAKRL). The proposed method leverages minimum variance embedding to exploit

the structural information of the underlying data in a single-layer architecture and

utilizes the reconstruction error to identify the outliers.

Contribution II: Minimum Variance Embedded Deep KRL-based Method

for One-class Classification
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We have further examined variance minimization in a multi-layer architecture by

combining reconstruction-based and boundary-based frameworks. Thus, we have pro-

posed the minimum variance embedded deep KRL-based one-class classifier (DKR-

LVOC). The proposed multi-layer architecture is formed by stacking multiple KRL-

based autoencoders (reconstruction-based) sequentially with minimum variance em-

bedding at the initial layer, followed by a KRL-based one-class classifier (boundary-

based) at the final layer. The stacked autoencoders reconstruct the key information

at the intermediate layers and enable better representation of data. The use of mul-

tiple reconstruction-based layers and the final boundary-based OCC layer enables the

model to classify data more precisely.

Contribution III: Application of DKRLVOC for the identification of

Alzheimer’s and Breast Cancer Diseases

The proposed method, DKRLVOC, is applied for the identification of Alzheimer’s

and Breast Cancer diseases. We have utilized structural magnetic resonance imaging

data1 to train the one-class classifier to identify Alzheimer’s disease, and histopatho-

logical image data [39] for learning the difference between cancerous and non-cancerous

tumors in case of Breast Cancer disease.

1.5 Organization of the Thesis

This thesis is organized into six chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This chapter provides the background knowledge of OCC, the motivation behind

our work, and the contributions of this thesis.

Chapter 2 (Literature Survey)

1adni.loni.usc.edu
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This chapter provides a detailed literature survey on how variance minimization

has been applied to different machine learning tasks, along with a survey on different

KRL-based one-class classifiers. It also provides the details of different metrics used

for performance evaluation of proposed methods.

Chapter 3 (Minimum Variance Embedded Auto-associative KRL-based

Method for One-class Classification)

In this chapter, we propose the minimum variance embedded auto-associative KRL-

based one-class classifier (VAAKRL). The proposed method incorporates the concept

of minimum variance embedding with representation learning, and aims at minimizing

the dispersion of the data and the reconstruction error, simultaneously. We experiment

the proposed method on 14 benchmark datasets and compare their performance with

different state-of-the-art one-class classifiers.

Chapter 4 (Minimum Variance Embedded Deep KRL-based Method for

One-class Classification)

In this chapter, we propose the minimum variance embedded deep KRL-based

one-class classifier (DKRLVOC). The proposed method uses multiple KRL-based au-

toencoders stacked in a sequential manner with a one-class classifier at the last layer.

It leverages minimum variance embedding to minimize the data dispersion, and the

multi-layer approach helps to combine both reconstruction and boundary frameworks

in a single architecture. We experiment the proposed method on 24 benchmark

datasets and compare their performance with various existing one-class classifiers.

Chapter 5 (Application of DKRLVOC: Identification of Alzheimer’s and

Breast Cancer Diseases)

In this chapter, we apply DKRLVOC for the detection of Alzheimer’s disease

using structural magnetic resonance imaging data and Breast Cancer disease using

histopathological image data.

Chapter 6 (Conclusions and Future Work)

7



This chapter provides a brief description of the contributions of this thesis and the

possible future scope of our work.
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Chapter 2

Literature Survey

This chapter provides a detailed literature survey in four sections. Section 2.1

discusses the various existing approaches for OCC. Section 2.2 discusses the concept

of variance and provides a survey on the existing work on variance minimization for

different machine learning tasks. Section 2.3 discusses the kernel trick and the existing

KRL-based one-class classifiers. Section 2.4 provides a brief review on autoencoder.

Finally, Section 2.5 provides a survey on the various performance metrics that re-

searchers have used for the analysis of the existing one-class classifiers and discusses

the metrics used for performance evaluation of the proposed methods in this thesis.

2.1 One-Class Classification

Several methods have been proposed over the years to tackle the problem of OCC.

These methods differ in their approach to exploit different characteristics of the data.

In a broad sense, the exiting approaches for OCC can be classified into three types

[5, 6]:

(1) Density-based approach: This approach involves making assumptions regard-

ing the probability density of the data, followed by setting a threshold based on

the density. The samples whose estimated probability is lesser than the threshold

are classified as outliers. It assumes that the target class samples are very likely to

appear in areas of high density. However, this approach requires a large number

9



of training samples. The approach is very advantageous when a probability model

with low bias is assumed, and the sample size is sufficient.

(2) Reconstruction-based approach: The original purpose of reconstruction-

based methods is to model the data. They are used to obtain a more effective

representation of the data. The reconstructed data suffers from less noise as com-

pared to the original data. When using the reconstruction-based approach for

OCC, it is assumed that the outliers do not satisfy the assumptions about the

target distribution. Hence, the encoded representation for the outlier data should

be worse than the target data, and the reconstruction error for the outliers should

be high. A one-class classifier obtains an empirical threshold using the training

set. If the reconstruction error is less than the threshold, then the sample belongs

to the target class, otherwise the outlier class.

(3) Boundary-based approach: In the boundary-based approach, a closed bound-

ary around the target class is optimized. The samples that lie within the boundary

belongs to the target class. This approach doesn’t depend on the density distribu-

tion of the data. Most of the boundary-based methods stress towards a minimal

volume solution. However, the extent of the minimal volume depends on the fit

of the method to the data. In comparison to the density-based methods, the

boundary-based approach requires less number of samples.

Further, in Section 2.2, we discuss the concept of variance and the existing works

in the field of variance minimization.

2.2 Variance and its usage in Machine Learning

The section discusses the concept of variance, followed by a survey on variance

minimization, which has been utilized in the past for various machine learning tasks.
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2.2.1 Variance

A common approach of the supervised or semi-supervised machine learning models

is to learn an estimate of the true underlying function f , denoted as f̂ , that best fits

the data. Since f is unknown, such models use the data available during training

and the associated target values to learn f̂ , which can further be used to estimate the

target values of the unseen data. Variance can be referred to as the amount of change

in f̂ when we estimate it using different datasets [40]. Since the training data is used

to estimate the f̂ , different training datasets will yield different f̂ . In ideal scenarios,

the estimated function f̂ should not vary too much with a change in training datasets.

However, in case a method has high variance, then any small change in the training

data can result in large changes in f̂ . In general, the methods which are more flexible,

have higher variance. This can be understood from Figure 2.1. In the figure, the blue

curve is more flexible and follows the data points very closely. It has high variance as

any change in data points will result in considerable variation in estimate f̂ . However,

1 2 3 4 5
x

−1.0

−0.5

0.0

0.5

1.0

y

Figure 2.1: Two estimates of true function are shown. The blue curve follows the data
points more closely relative to the red curve.
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the red curve is relatively inflexible and has low variance, as moving any single data

point will likely result in small changes in the position of the curve.

More formally, the variance is a measure of the spread of the data distribution

[41]. It can be expressed as the average of squared differences of the network output.

In this thesis, we leverage minimum variance embedding in reconstruction-based KRL

one-class classifiers to minimize the dispersion of data. This forces the network out-

put weight to emphasize in regions of low variance and improves the generalization

performance of the classifier. Further, we discuss the mathematical formulation of

variance for the KRL-based one-class classifiers [13]. Taking the training input as,

X = {xi |xi ∈ Rd, i = 1, 2, ...,N}, the variance of the network output is expressed as,

V =
1

N

N∑
i=1

(
Ôi −O

) (
Ôi −O

)T
,

=
1

N

N∑
i=1

(
(β)T h(xi)− (β)T H

) (
(β)T h(xi)− (β)T H

)T
,

= (β)T
(

1

N

N∑
i=1

(
h(xi)−H

) (
h(xi)−H

)T)
β,

= (β)T VC β, (2.1)

where, Ôi is the network output, and h(xi) is the non-linear feature mapping for a

training sample xi. β is the network output weight, and O = 1
N
∑N

i=1 Ôi is the mean

network output for all training samples. H = 1
N
∑N

i=1 h(xi) is the mean vector of the

samples in the non-linear feature space, and VC is the class variance. Further, the

class variance (VC) can be simplified as,

VC =
1

N

N∑
i=1

(h(xi)−H)(h(xi)−H)T

=
1

N
H
(
I− 1

N
aaT

)
(H)T

= HM (H)T , (2.2)

where, I is an identity matrix, a is a vector of ones, and H =
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[h (x1) , h (x2) , ... ,h (xN )]. Further, the intra-class variance (VS) can be expressed

as,

VS =
N∑
i=1

P∑
p=1

Np

N
γpi (h(xi)−H)(h(xi)−H)T , (2.3)

where, Np denotes the number of samples that belongs to the cluster p, and γpi denotes

if xi belongs to cluster p or not. The data is grouped into sub-classes using a clustering

method like k-means.

Further, in Section 2.2.2, we provide a survey on variance minimization applied for

a range of machine learning applications.

2.2.2 Variance Minimization

Over the years, the researchers have tried to minimize the data dispersion to im-

prove the generalization performance of the classifiers. Since variance is the measure of

the spread of data distribution, minimizing the variance has shown promising results

for different machine learning tasks. We provide a survey on variance minimization

applied to solve different types of machine learning tasks. Warmuth and Kuzmin

[42] designed two online variance minimization problems. In the first problem, they

measured the variance along a probability vector associated with the problem of min-

imizing risk in the stock portfolio, while in the second problem, the variance was

measured along an arbitrary direction. Additionally, they prove bounds on the total

variance incurred by the online algorithms. Hofmann et. al. [43] proposed a method

to overcome the slow convergence rate of stochastic gradient descent algorithms. They

explored algorithms that can exploit the surrounding structure in the training data to

leverage information about past stochastic gradients across data points and defined a

family of stochastic gradient descent algorithms to minimize variance. Variance min-

imization has been employed for the task of regression with kernel learning. In the

method proposed by Ormándi [44], weight variance minimization was integrated into

the objective function of a least-squares SVM for the task of time series analysis. They

intended to adjust the weight of the variance of the error in the kernel feature space.

Xiaofei et. al. [45] proposed a variance minimization criterion for feature selection
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using laplacian regularization. They considered the feature selection problem in un-

supervised learning scenarios and selected features such that the size of the parameter

covariance matrix of the regularized regression model is minimized. They used trace

and determinant operators to measure the size of the covariance matrix. Further,

Jean et. al. [46] proposed a semi-supervised deep kernel learning regression model

with unlabeled data that minimized predictive variance. The method takes advan-

tage of representation learning-based neural networks and the probabilistic modeling

power of gaussian processes. Variance minimization has been applied for the task of

binary classification [7, 8, 9] with kernel learning by leveraging support vector ma-

chines (SVM). Wang et. al. [7] proposed a minimum class locality preserving variance

SVM that aimed to perform binary classification and introduced the idea of locality

preserving projections. Further, Chen et. al. [8] proposed a recursive projection twin

SVM-based binary classifier via within-class variance minimization. They tried to sep-

arate the projected samples of one class from the other class by finding a weight vector

direction for each class. They used within-class variance and the distance between the

mean of projected class to measure the separability. Their idea was to search for a

projection axis for each class such that the within-class variance of one class is min-

imized, and the projected samples of other class are scattered wide. Further, Ye et.

al. [9] proposed the least-squares SVM-based binary classifier via maximum one-class

within-class variance. They expected to keep the genuine geometric interpretation of

generalized proximal SVM in the least-squares twin SVM. Researchers have applied

variance minimization in the field of multi-class classification [10, 11, 12] as well. Ji

and Han [10] proposed a variance minimization criterion-based multi-class classifier for

active learning on graphs. They labeled the nodes such that the variance of unlabeled

data distribution and the expected prediction error was minimized. Further, Iosifidis

et. al. [11, 12] proposed a minimum variance-based extreme learning machine for

the task of human action recognition by adopting shape and motion information and

the Bag-of-Features-based action representation. Variance minimization has also been

applied for one-class classification. Mygdalis et. al. [13] proposed a minimum vari-

ance embedded boundary-based one-class classifier for facial image analysis that used
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KELM as a base classifier. The embedding improved the generalization performance

of the classifier by minimizing the class variance. The minimum variance embedding

has not been explored for the reconstruction-based approach for OCC in the past. In

this thesis, we explore minimum variance embedding by developing single-layer and

multi-layer reconstruction-based one-class KRL classifiers.

Since the proposed methods utilize kernel learning and are based on KRL, we

discuss the kernel trick and the existing KRL-based one-class classifiers in Section 2.3.

2.3 Kernel Learning

Kernel learning has been employed in the past for different types of classification,

namely, binary, multi-class, and one-class classification [47]. In this thesis, we focus

on kernel learning for one-class classification. In 1999, Schölkopf et al. [1] proposed

a kernel learning-based OCC model for novelty detection and coined it as one-class

support vector machine (OCSVM). The proposed model was developed by taking

SVM as the base classifier. Further, Tax and Duin proposed another kernel learning-

based one-class classifier taking SVM as the base classifier, which is popularly known as

support vector domain description [33] or support vector data description [35] (SVDD).

Though both OCSVM and SVDD were developed by taking SVM as the base classifier,

the working methodology of both the methods is quite different. OCSVM uses a

hyperplane to separate the target class samples from the origin in the feature space.

Further, the model maximizes the distance of the hyperplane from the origin. In

contrast to the use of hyperplane in OCSVM, SVDD constructs a hypersphere around

the target class data in the feature space. The radius of the hypersphere is minimized

to enclose the maximum number of target class data points under the minimum radius.

A one-class classifier is also called a data descriptor as it describes the characteristics

of the data and performs classification based on the data description. The OCSVM

and SVDD are domain-based one-class classifiers. They describe the boundary or

domain of the target class data points and are insensitive to the underlying density of

the data. Thus, they can be particularly helpful when the density distribution of the
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target class is unknown. However, they need a sufficient amount of samples from the

target class during training to describe the domain of the target class.

Further, we discuss the kernel trick in Section 2.3.1, followed by a discussion on the

existing KRL-based one-class classifiers in Section 2.3.2. Since the proposed methods

in this thesis are based on the existing least-squares kernel autoencoder-based one-class

classifier [48], we discuss its formulation in Section 2.3.3.

2.3.1 Kernel Trick

In the complex classification tasks, there are situations where it is not possible

to linearly separate the available data in the original feature space. The kernel trick

is used to tackle such situations. The kernel trick [49, 41] grants a mechanism to

manipulate the linearly inseparable data in the original feature space, and project

it in a higher-dimensional space. The projected data can become linearly separable

in the higher dimensional space. Further, a hyperplane can be used to separate the

projected data.

The kernel trick provides a link from linearity to non-linearity for algorithms that

can be expressed in terms of dot products between two vectors. The data is trans-

formed by mapping the input data onto a higher dimensional space. Hence, a linear

algorithm that directly operates on the transformed data will actually behave non-

linearly in the original input space. The kernel trick is based on the inner product of

the samples mapped onto a feature space h(x).

Definition: A kernel function K(x,y) can be expressed as an inner product in

feature space and is denoted as:

K(x,y) = h(x).h(y) (2.4)

where, h(.) is the non-linear feature mapping. A kernel function is used to generate

a kernel or gram matrix. Any function can be treated as a kernel function if and only

if it satisfies Mercer’s theorem [50].

Mercer’s Theorem: A symmetric function K(x,y) can be expressed as an inner
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product K(x,y) = h(x).h(y), for some non-linear feature mapping h(.) if and only

if K(x,y) is positive semidefinite.

The kernel trick is handy as we don’t need to actually compute the mapping in

equation 2.4. Any algorithm can leverage the kernel trick, under the condition that

the algorithm can be expressed in terms of an inner product between two vectors. This

is where we use the trick: wherever an inner product is used within the algorithmic

expression, it is replaced with a kernel function. Hence, we can avoid to explicitly

compute the mapping by using a kernel function. Thus, the data can be mapped

onto a higher dimensional space without explicitly mapping the input points into this

space.

The proposed methods in this thesis utilize KRL as a base classifier; hence we

discuss the existing KRL-based one-class classifiers in Section 2.3.2.

2.3.2 KRL-based One-class Classifiers

The SVM-based one-class classifiers are computationally expensive as they are in-

volved in solving a quadratic optimization problem. Least-squares was introduced

to SVM formulation to handle this issue and named as least-squares SVM (LSSVM)

[51, 52, 36]. The idea of this least-squares is directly linked to the kernel regularized

least-squares (KRL) [53, 54]. The LSSVM with zero bias is identical to KRL. This is

evident from the formulation of LSSVM in equation (2.5), and KRL in equation (2.7)

and (2.8). The optimization problem of another popular method, namely, extreme

learning machine (ELM) [55] was reformulated for the kernel [56], leading to an iden-

tical optimization problem as KRL. The kernel formulation for ELM is referred to as

kernel extreme learning machine (KELM). Below, we provide a brief analysis of the op-

timization problem of LSSVM, KELM, and KRL to facilitate a better understanding

of the differences between these methods.

Given a training set {xi, yi}i=1,2,...,N , where xi denotes ith training sample, and

yi denotes the target value for the ith sample. We provide a brief analysis on the

optimization problem of LSSVM, KELM, and KRL as follows,
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Optimization problem of LSSVM:

min
ω,ei

1

2
‖ω‖2 +

C

2

N∑
i=1

‖ei‖22

s.t. ωTφi + b = yi − ei, i = 1, 2, ..., N,

(2.5)

where, ω is the weight coefficients, φ(.) is the mapping in the feature space, ei denotes

training error for the ith sample, and C is a regularization parameter.

Optimization problem of KELM:

min
β,ei

1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

s.t. βTh(xi) = yi − ei, i = 1, 2, ..., N,

(2.6)

where β is the network output weight (i.e., weight coefficients), and h(.) is the mapping

in KELM feature space. The notations used in the equation 2.6 is consistent with the

KELM papers [57, 56].

Optimization problem of KRL can be represented in two ways:

First way,

min
β,ei

1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

s.t. βTh(xi) = yi − ei, i = 1, 2, ..., N.

(2.7)

Second way,

min
β,ei

C

2
‖β‖2 +

1

2

N∑
i=1

‖ei‖22

s.t. βTh(xi) = yi − ei, i = 1, 2, ..., N.

(2.8)

Comparing equations (2.7) and (2.8), we can find that in equation (2.7), C is

associated with the error term, while in equation (2.8), C is associated with the

weight term. C is the regularization parameter, and is responsible to control the

trade-off between the square loss, and the norm of the output weight. Hence, C can
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be associated with either the error, or the weight term. It will not affect the solution.

Further, comparing equations (2.6) and (2.7), the formulations for KELM and KRL

are identical. Some researchers have used different notation for the feature mapping

in the formulation of KRL; however, the optimization problem will not change just

due to the use of different notation for the same thing. Hence, both KELM and KRL

yield the same solution. When comparing equations (2.5) and (2.7), we find that the

optimization problems of LSSVM and KRL differ in two aspects. The first difference

is the notation used for the weights (i.e., ω or β) and the feature mapping (i.e., φi or

h(xi)). However, a difference in notation doesn’t change the solution obtained. The

second difference is the presence of the term b on the left side of the constraints of

LSSVM in the equation (2.5). We can obtain the formulation of KRL from LSSVM

by simply substituting b = 0 in the equation (2.5). Hence, we can conclude that KRL

is equivalent to LSSVM without bias. From the above discussion, we can concur that

mathematically KRL is equivalent to KELM and LSSVM without bias.

The proposed methods of this thesis are the variants of KRL and KELM. Since

KRL is an older and more generic name compared to KELM, we use the name KRL

instead of KELM in this thesis to describe the existing and the proposed methods.

The KRL-based models follow a non-iterative approach to learning by solving a

linear system. Hence, they have received quite an attention from the researchers over

the years. The KRL-based one-class classifiers can be classified into two categories,

namely, (i) without Variance Minimization (ii) with Variance Minimization.

(1) Without Variance Minimization: In the past, researchers have employed

KRL-based classifiers to solve OCC problems without incorporating minimum

variance information. Leng et al. [37] proposed a one-class classifier with KELM

as its base, which followed the boundary-based approach for OCC. Later, Gautam

et al. [48] proposed a least-squares kernel autoencoder-based one-class classifier

that followed the reconstruction-based approach for OCC. Dai et al. [38] further

proposed a multi-layer framework-based one-class classifier that incorporated the

advantages of both the reconstruction-based layers and the boundary-based ap-

proach to OCC in a single model. The KRL-based one-class classifiers have also
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been applied for anomaly detection in gas turbine combustors [58] and videos [59].

(2) With Variance Minimization: In the past, minimum variance information

has been leveraged with KRL-based classifiers to solve OCC tasks. Mygdalis et

al. [13] proposed a minimum variance embedded KRL-based one-class classifier

that followed a boundary-based approach to OCC and applied it for facial image

analysis.

The proposed methods in this thesis are developed by embedding minimum vari-

ance information in the existing reconstruction-based OCC approach. This approach

developed by Gautam et. al. [48] is referred to as the least-squares kernel autoencoder-

based one-class classifier, to which we provide a brief discussion in Section 2.3.3.

2.3.3 Least-squares Kernel Autoencoder-based method for

OCC

In the least-squares kernel autoencoder-based one-class classifier [48], the data at

the input layer is used for reconstruction at the output layer using kernelized feature

mapping. Being auto-associative in nature, the input and output layer is made of an

equal number of nodes. X = {xi | xi ∈ Rd, i = 1, 2, ...,N} is taken as the training

input. The training involves calculating the optimum output weight by solving the

following optimization problem,

min
β,ei

1

2
||β||2F +

1

2
C

N∑
i=1

||ei||22 (2.9)

s.t βTh(xi) = xi − ei, i = 1, 2, ...,N ,

where, ei is the reconstruction error, and h(xi) is the mapping in the feature space

for a training sample xi. C acts as the trade-off between minimizing the output

weight norm and the reconstruction error. || . ||F refers to the frobenius norm. Solving
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equation (2.9), the optimum output weight (β) is derived as,

β = HT

(
1

C
I +HHT

)−1
XT , (2.10)

where, H = [h (x1) , h (x2) , ... ,h (xN )], and I is an identity matrix. The network

output (Ô) is derived as,

Ô = h(x)β. (2.11)

Further, the kernel matrix (Ω) is defined as,

Ω = HHT (2.12)

s.t. Ωj,k = h(xj)h(xk) = K(xj,xk), j, k = 1, ...,N ,

where, K is a kernel function. Using kernelized feature mapping, the equation (2.10)

is rewritten as,

β =

(
1

C
I + Ω

)−1
XT . (2.13)

The network output for the training data is then calculated as,

Ô =


K(x,x1)

...

K(x,xN )


T (

1

C
I + Ω

)−1
XT . (2.14)

After obtaining the network output, a threshold value is calculated based on the re-

constructed data at the output. The threshold value helps to decide whether a sample

belongs to the target or the outlier class. For the least-squares kernel autoencoder-

based one-class classifier, the threshold value is determined as follows,

(1) The reconstruction error (s) is calculated as,

si =
d∑

j=1

(Ôij − xij)2, i = 1, 2, ...,N . (2.15)

(2) The error vector (s) is then sorted in decreasing order and is denoted as, sdec.

21



In OCC, the threshold is calculated by assuming a certain percent of training

samples as outliers. Primarily, the most deviant samples are dismissed as outliers,

as they are the most far from the target class distribution. Hence, the threshold

(θ) is calculated as,

θ = sdec(bδ ∗ Nc), (2.16)

where, 0 ≤ δ ≤ 1 is the fraction of dismissal of training samples, and N is the

number of training samples.

During testing, for a test sample xt, the network output (Ôt) is determined as,

Ôt =


K(xt,x1)

...

K(xt,xN )


T

β. (2.17)

The loss (st) is then calculated as,

st =
d∑

j=1

(
Ôtj − xtj

)2
. (2.18)

Finally, the classification is done using the following rule,

sign(θ − st) = 1, xt belongs to target class, (2.19)

− 1, xt belongs to outlier class.

Overall, we have observed in Section 2.3 that the concept of minimum variance

embedding has not been explored for a reconstruction-based approach to OCC. Hence,

in this thesis, we propose the minimum variance embedded KRL-based method that

follows a reconstruction-based approach to OCC. Further, we explore minimum vari-

ance embedding for a multi-layer approach developed by stacking multiple KRL-based

autoencoders in sequence. Below in Section 2.4, we briefly discuss the concept of au-

toencoder and the relevant existing work.
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2.4 Autoencoder

Autoencoders have been quite a topic of interest in the past decade [60, 61]. Au-

toencoders are an unsupervised learning technique that uses neural networks to re-

construct the input at the output layer [62]. It learns the latent information of the

input and reconstructs the essential information at the output layer. They leverage

representation learning to learn a compressed knowledge representation of the original

input. They are usually restricted to learn only certain aspects of the input, which of-

ten helps them to learn useful properties of the data. Autoencoders can be considered

to be a special case of feedforward neural networks. Similar to feedforward networks,

they can be trained with the same techniques, that is, mini-batch gradient descent

following gradients computed by back-propagation.

The idea of autoencoders has existed for quite some time [63, 64, 62]. Researchers

have employed autoencoders for various tasks viz., dimensionality reduction [65], semi-

supervised learning [66], representation and multi-task learning [67], pattern genera-

tion [68], noise reduction [69], anomaly detection /OCC [32, 70, 71, 72], information

retrieval for texts [73] and images [74, 75], transfer learning [76], and generating higher

resolution images [77]. In this thesis, we have incorporated stacked KRL-based au-

toencoders for non-iterative learning to design single-layer and multi-layer one-class

classifiers, which is discussed in detail in the later chapters.

Further, in Section 2.5, we provide a survey on the various performance metrics

that researchers have used for the analysis of the existing one-class classifiers and

discuss the metrics used for the performance evaluation of the proposed methods in

this thesis.

2.5 Performance Metrics

Researchers have used various performance metrics for evaluating the performance

of one-class classifiers. Cohen et. al. [78] used the specificity and sensitivity met-

rics for the performance evaluation in case of nosocomial infection detection using a
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OCSVM. Manevitz and Yousef [23] used the F1 score and accuracy metrics for one-

class document classification with the help of neural networks. Further, Kemmler et.

al. [79] used the specificity and sensitivity metrics for the automatic identification of

novel bacteria using Raman spectroscopy and gaussian processes. Leng et. al. [37]

proposed the one-class extreme learning machine and utilized the F1 score for the

performance evaluation of his proposed method. Further, Mygdalis et. al. [13] and

Iosifidis et. al. [80] utilized the g-mean metric for performance evaluation of their

proposed one-class classifiers. In this thesis, we have adopted the following metrics for

performance evaluation to test the novel one-class classifiers,

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.20)

Precision (P ) =
TP

TP + FP
, (2.21)

Recall (R) or Sensitivity =
TP

TP + FN
, (2.22)

F1 score =
2 P.R

P +R
, (2.23)

G−mean =
√
P.R. (2.24)

Above, FN, FP, TN, and TP represent false negative, false positive, true neg-

ative, and true positive, respectively. Accuracy denotes the fraction of all correct

measurements. Precision reflects the fraction of correct positive measurements among

all the predicted positives. Recall indicates the fraction of correct positive measure-

ments among the actual positives. F1 score and G-mean are the harmonic mean and

geometric mean of precision and recall, respectively.

In the case of imbalanced datasets, it is possible to obtain good accuracy by clas-

sifying any given sample to the majority class. Taking an example, suppose we have

an imbalanced dataset where 90 samples belong to the positive class, and 10 samples

belong to the negative class. Now, a model may classify all the negative class samples

incorrectly to the positive class. In such a case, the accuracy will be determined as

90%, even if all the negative class samples are incorrectly classified. Hence, accuracy
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fails to give an unbiased score for the performance of a model when the data is im-

balanced. Precision and recall provide a better understanding of the efficiency of a

model in such cases. In order to obtain an equilibrium between precision and recall,

F1 score, and g-mean are mostly used [23, 37, 13, 80] when the data is imbalanced.

In this thesis, we use the F1 score as the first evaluation metric as most of the

datasets that we have used for the experiments are imbalanced in nature. Since we

have to compare multiple classifiers on various datasets, we compute the mean of all

F1 scores (ηF1) over all the datasets by taking inspiration from an existing work [81].

We consider ηF1 as the final evaluation measure to rank the classifiers as per their

performance. For reference purpose, we also present the results based on accuracy,

g-mean, precision, and recall metrics.
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Chapter 3

Minimum Variance Embedded

Auto-associative Kernel Regularized

Least-Squares Method for One-class

Classification.

In this chapter, we propose the Minimum Variance Embedded Auto-Associative

KRL-based method for OCC (VAAKRL). The proposed method is inspired by another

reconstruction-based method for OCC [48], which used KELM as a base classifier. In

the past, minimum variance embedding was applied for the boundary-based method for

OCC [13] but was never explored for the reconstruction-based OCC method. We incor-

porate the concept of minimum variance embedding [13] with representation learning

and propose the VAAKRL method that follows a reconstruction-based approach to

OCC. VAAKRL aims at minimizing the reconstruction error and considers the dis-

persion of the data at the same time. It forces the network output weights to focus

in low-variance regions. We experiment with the proposed method on 14 benchmark

datasets and compare their performance with different existing one-class classifiers

based on various performance metrics, which we have discussed in Section 2.5 of

Chapter 2. We discuss the details of the proposed method further in Section 3.1.
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3.1 Proposed Method: VAAKRL

The proposed method VAAKRL, is a minimum variance embedded reconstruction

framework-based method for OCC. We have shown the architecture of the proposed

method in Figure 3.1. It leverages variance minimization using a single-layer KRL-

based autoencoder. VAAKRL minimizes the variance and the reconstruction error

at the same time using the proposed optimization criterion. This improves the per-

formance of the model, resulting in better classification. We perform the training of

VAAKRL by reconstructing the input at the output layer. As it is a reconstruction-

based method, we empirically determine a threshold during training by using the

reconstruction error. As we perform the training using only the target class data, the

reconstruction error for the outlier data should be relatively high as compared to the

target data. Further, we introduce the formulation of the proposed method.

 

 

 

 

 

 

 

 
Minimum Variance Embedding 

Kernel Matrix  𝜷 

  𝒉(𝒙𝟏) 

 𝑥𝑖1 
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 𝑂𝑖𝑑̂ 

 

Figure 3.1: Architecture of VAAKRL.

We consider the training input as, X = {xi | xi ∈ Rd, i = 1, 2, ...,N}, where N

refers to the number of training samples. Rewriting the expression of variance from
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Section 2.2.1 of Chapter 2,

V =
1

N

N∑
i=1

(
Ôi −O

) (
Ôi −O

)T
,

=
1

N

N∑
i=1

(
(β)T h(xi)− (β)T H

) (
(β)T h(xi)− (β)T H

)T
,

= (β)T
(

1

N

N∑
i=1

(
h(xi)−H

) (
h(xi)−H

)T)
β,

= (β)T VC β, (3.1)

where, Ôi is the network output, and h(xi) is the non-linear feature mapping for a

training sample xi. β is the network output weight, and O = 1
N
∑N

i=1 Ôi is the mean

network output for all training samples. H = 1
N
∑N

i=1 h(xi) is the mean vector of the

samples in the non-linear feature space, and VC is the class variance. Further, the

class variance (VC) can be simplified as,

VC =
1

N

N∑
i=1

(h(xi)−H)(h(xi)−H)T

=
1

N
H
(
I− 1

N
aaT

)
(H)T

= HM (H)T , (3.2)

where, I is an identity matrix, a is a vector of ones, and H =

[h (x1) , h (x2) , ... ,h (xN )].

After embedding minimum variance information, we propose the following opti-

mization criterion to minimize the variance and the reconstruction error simultane-

ously.

min
β,ei

1

2

∣∣∣∣∣∣(β)T (VC + λI) β
∣∣∣∣∣∣2

F
+
C

2

N∑
i=1

‖ei‖22 (3.3)

s.t. (β)T h (xi) = xi − ei, i = 1, 2, ...,N ,
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where, ei is the reconstruction error, and C is the regularization parameter. λ is the

graph regularization parameter, and || . ||F refers to frobenius norm. We substitute the

equation (3.2) in equation (3.3), and derive the following expression using langrangian

relaxation,

L =
1

2

∣∣∣∣∣∣(β)T
(
HM (H)T + λI

)
β
∣∣∣∣∣∣2

F
+
C

2

N∑
i=1

‖ei‖22−
N∑
i=1

αi

(
(β)T h (xi)− xi + ei

)
,

(3.4)

where, α = {αi}, i = 1, 2, ...,N , is a langrangian multiplier. Next, we perform further

computations as follows:

∂L
∂β

= 0 =⇒ β = αH
(
HM (H)T + λI

)−1
, (3.5)

∂L
∂ei

= 0 =⇒ E =
α

C
, (3.6)

∂L
∂α

= 0 =⇒ α = C
(
X− (β)T H

)
. (3.7)

We substitute the equation (3.7) in equation (3.5) to derive the output weight as,

β = H

(
H (H)T +

HM (H)T

C
+
λ

C
I

)−1
X. (3.8)

The network output is further expressed as,

Ô = h(x)β. (3.9)

Next, we define a kernel matrix Ω as,

Ω = HHT (3.10)

s.t. Ωj,k = h(xj)h(xk) = K(xj,xk), j, k = 1, ...,N ,

where, K is a kernel function. We use the kernel mapping to rewrite the equation
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(3.8), and calculate the output weight (β) as,

β =

(
Ω +

MΩ

C
+
λ

C
I
)−1

X. (3.11)

Finally, using kernel mapping we rewrite the equation (3.9), and calculate the network

output for the training data as,

Ô =


K(x, x1)

...

K(x, xN )


T (

Ω +
MΩ

C
+
λ

C
I
)−1

X. (3.12)

Since VAAKRL follows a reconstruction-based approach to OCC, the degree of

deviation in reconstruction error is used to classify the samples into the target or

outlier class. Since the outlier samples don’t follow the target class distribution, it is

assumed that they have a high reconstruction error relative to the target class samples.

This assumption helps to decide the threshold (θ) as follows,

(1) We calculate the loss s using the following loss function,

si =
d∑

j=1

(Ôij − xij)2, i = 1, 2, ...,N . (3.13)

(2) We sort the loss vector (s) in decreasing order and denote it as sdec. A certain

fraction of training data is dismissed as outliers to determine the threshold in

OCC. The most deviant samples are dismissed as outliers first, as they have the

highest reconstruction error. Hence, we calculate the threshold (θ) as,

θ = sdec(bδ ∗ Nc), (3.14)

where, 0 ≤ δ ≤ 1 is the fraction of dismissal. δ controls what fraction of the

training data is dismissed as outliers.

Assuming, X = [20.8 31.7 15.6 14.5], C = 0.5 and λ = 1, we present the following
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illustrative example of the steps involved during training,

(1) Using 3.10, we determine the kernel matrix as Ω =


1 0.2 0.7 0.6

0.2 1 0.06 0.04

0.7 0.06 1 0.9

0.6 0.04 0.9 1

.

(2) Using 3.11, we determine the output weight as β =


3.2 0.1 1.1 1.003

−0.2 3.2 −0.6 −0.6

1.2 −0.1 3.6 1.6

1.1 −0.1 1.6 3.6

.

(3) Using 3.12, we determine the network output as Ô = [4.2 10.9 2.3 2.1].

(4) Using 3.14 and taking δ = 0.25, we determine the threshold as θ = 106.3.

During testing, for a test sample xt, we calculate the test output Ôt as,

Ôt =


K(xt,x1)

...

K(xt,xN )


T

β. (3.15)

Further, we calculate the test sample loss (st) as,

st =
d∑

j=1

(
Ôtj − xtj

)2
. (3.16)

Finally, we perform OCC using the following decision rule,

sign(θ − st) = 1, xt belongs to target class, (3.17)

− 1, xt belongs to outlier class.

We briefly provide the implementation steps for the proposed method in Algorithm

3.1. Further, in Section 3.2, we present the experimental results for VAAKRL on
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different datasets and compare them with various exiting state-of-the-art one-class

classifiers.

Algorithm 3.1 VAAKRL

Given:
Training dataset: X, Regularization parameter: C, Graph regularization parameter:
λ, Fraction of dismissal: δ
Training:

1: Calculate kernel matrix Ω using 3.10.
2: Calculate output weight β using (3.11).

3: Calculate network output Ô using (3.12).
4: Calculate threshold θ using (3.14).

Testing:

1: For test sample xt, calculate network output Ôt using (3.15).
2: Classify xt using (3.17).

3.2 Experiments

Matlab R2016a is used for all the trials running on a PC with Intel Core i5 3.10 GHz

CPU, 32 GB RAM. We have conducted experiments on 14 UCI benchmark datasets.

The datasets have been downloaded from the UCI Machine Learning Repository [82],

and the website of TU Delft1 made available by Tax and Duin [83] in the preprocessed

form for OCC. Tax and Duin [83] obtained the one-class datasets from the multi-class

datasets by taking one of the classes as target and the rest of the classes as outliers.

We have followed the same approach. We present the specifications of the one-class

datasets, along with the associated target class in Table 3.1. The samples with any

missing feature values have been removed. We have normalized all the features with a

mean 0 and standard deviation 1 using z-score. We have used 50% of the target and

outlier class samples for 5-fold cross-validation, and the other 50% as the test set. It

is important to note that we have used samples from only the target class to train the

model. The optimal parameters is selected using 5-fold cross-validation from a range

of values. The regularization parameter C is selected from the range {2−5, 2−4, ...., 25}.

1http://homepage.tudelft.nl/n9d04/occ/
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S.no. Datasets
#Total

Samples
#Target #Outlier #Features

Target

Class

1 Biomed∗ 194 127 67 5 Healthy

2 Breast Cancer∗ 699 241 458 9 Malignant

3 Breast Tissue 106 18 88 9 Mastopathy

4 Caesarian 80 46 34 5 1

5 Cardiotocography 2126 176 1950 22 Pathologic

6 Colposcopy 97 82 15 62 Good

7 Diabetic Retinopathy 1151 540 611 19 Normal

8 Heart Cleveland 297 160 137 13 Absent

9 Hepatitis∗ 155 123 32 19 Normal

10 Imports∗ 159 71 88 25 Low Risk

11 Sonar∗ 208 97 111 60 Rocks

12 SPECT Heart∗ 349 254 95 44 Abnormal

13 Waveform∗ 900 300 600 21 1

14 Wine∗ 178 48 130 13 3

* Obtained from website of TU Delft [83]. Rest are from UCI Machine Learning Repository [82].

Table 3.1: Specification of one-class datasets.

The graph regularization parameter λ is taken as 1 in all the experiments. The number

of clusters k for k-means clustering is selected from the range {2, ...., 10}. The fraction

of dismissal of outliers δ is selected from the range {1%, 5%, 10%}. All the methods

employ the Radial Basis Function (RBF) kernel, which can be calculated for data

points xi and xj as follows:

k(xi, xj) = exp

(
−
‖xi − xj‖22

2σ2

)
, (3.18)

where, we have used the mean of the euclidean distance across different training sam-

ples to obtain σ. All the existing and proposed one-class classifiers have been imple-

mented and tested in the same environment to ensure a fair comparison.

We compare the performance of the proposed method, VAAKRL, with 14 exist-

ing one-class classifiers, namely, One Class Random Forests (OCRF) [84], Principal

Component Analysis (PCA) [85], Naive Parzen density estimation [86], k-means [87],

1-Nearest Neighbor (1-NN) [88], k-Nearest Neighbor (k-NN) [89], Autoencoder neural

network or Multi-layer Perceptron [5], k-centers [90], Support Vector Data Descrip-

tion (SVDD) [35], One Class Support Vector Machine (OCSVM) [1], Minimum Span-

ning Tree-based one-class classifier (MST) [91], OCKELM [37], VOCKELM [13], and
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AAKELM [48]. The motivation behind choosing the existing one-class classifiers for

comparison purposes is based upon the fact that they have been used as benchmark

classifiers frequently in the past [84, 91] and are regarded as the standard classifiers in

the field of OCC [15]. OCSVM is implemented using the LIBSVM library [92], while

the implementation of other existing methods is taken from ddtoolbox [93].

We present the F1 scores for VAAKRL and the existing one-class classifiers for

different datasets in Tables 3.2 and 3.3. Due to the limitation in page width, the results

are divided into two tables. The first row in the tables lists the name of classifiers,

the first column lists the datasets, and the last row lists the mean F1 score (ηF1) for

each classifier. We consider ηF1 as the final evaluation measure to rank the classifiers

as per their performance. VAAKRL achieves the highest ηF1 over all the datasets

(highlighted in bold red in Table 3.3) in comparison to other one-class classifiers, with

a significant difference of 6.95% in the case of non-kernel-based methods. Also, it can

be noted that VAAKRL obtains the highest F1 score for an overwhelming 13 out of 14

datasets except Colposcopy, with a few other classifiers obtaining identical values for

some datasets. VAAKRL achieves this by reducing the variance and minimizing the

reconstruction error using the minimum variance embedded KRL-based autoencoder.

The reconstruction property helps to learn essential features from noisy input data, and

the minimum variance embedding in VAAKRL helps in better separation of outliers.

They grant VAAKRL a boost in performance over other one-class classifiers.

For reference purpose, we also present the experimental results based on accuracy,

g-mean, precision, and recall metrics for VAAKRL along with other KRL-based one-

class classifiers in Figure 3.2. VAAKRL achieves the highest accuracy for 12 out of

14 datasets. VOCKELM and OCKELM score the highest accuracy for the remaining

2 datasets, namely, Breast Tissue and Colposcopy. In terms of g-mean, VAAKRL

scores highest for 12 out of 14 datasets. OCKELM scores the highest g-mean for

Colposcopy, while AAKELM scores the highest g-mean for Diabetic Retinopathy.

VAAKRL achieves the highest precision for 11 datasets and the highest recall for 7

datasets. The efficiency of VAAKRL is evident from the observation that it performs

overwhelmingly better than other methods by scoring the highest accuracy, g-mean,
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OCRF

[84]

Naive

Parzen[86]

k-means

[87]

1-NN

[88]

k-NN

[89]

Autoencoder

[5]

PCA

[85]

MST

[91]

Biomed 79.25 93.75 91.18 92.42 89.86 88.37 94.03 91.18

Breast Cancer 51.17 88.33 90.4 46.4 48.91 57.07 50.11 88.12

Breast Tissue 29.03 50 48.48 43.24 48.48 38.71 44.44 48.48

Caesarian 73.02 70.97 73.02 73.02 73.02 64.29 70.97 73.02

Cardiotocography 15.29 39.07 25.81 39.39 34.08 55.51 35.58 34.08

Colposcopy 87.06 81.08 89.66 89.66 90.91 88.37 86.75 90.91

Diabetic Retinopathy 63.91 65.91 65.17 66 65.56 66.84 66.58 66

Heart Cleveland 70.18 76.3 65.19 67.01 69.79 73.68 72.99 68.78

Hepatitis 88.41 86.18 88.41 88.41 88.41 88.89 88.89 88.41

Imports 61.4 63.83 64.08 65.26 63.55 60.87 55.88 61.95

Sonar 66.67 63.72 64 62.86 63.95 67.63 62.02 63.95

SPECT Heart 84.39 79.58 84.39 79.17 84.39 84.39 80.41 84.39

Waveform 50 78.26 73.6 74.41 73.25 70.8 72.33 73.33

Wine 42.48 93.62 62.3 59.74 62.16 59.15 43.14 61.33

ηF1 61.59 73.61 70.41 67.64 68.31 68.9 66.01 71

Table 3.2: Performance in terms of F1 score over 14 one-class datasets.
k-centers

[90]

Kernel-based methods

OCSVM

[1]

SVDD

[35]

OCKELM

[37]

VOCKELM

[13]

AAKELM

[48]
VAAKRL

Biomed 88.57 91.85 90.63 91.97 91.85 91.97 94.03

Breast Cancer 46.09 84.43 81.22 89.88 71 88.45 92.05

Breast Tissue 41.67 50 45.45 51.61 46.15 50 51.61

Caesarian 67.8 62.07 63.16 73.02 68.85 73.02 73.02

Cardiotocography 26.76 17.17 19.15 63.76 63.45 88.89 88.89

Colposcopy 89.66 86.75 82.05 90.48 85 85 86.42

Diabetic Retinopathy 65.2 65.06 65.17 67.37 63.53 67.98 68.18

Heart Cleveland 64.97 66.67 67.33 77.84 69.7 76.04 77.84

Hepatitis 88.41 84.85 86.57 88.89 88.89 88.89 88.89

Imports 68.13 70 55.74 77.92 75.68 72.97 77.92

Sonar 67.65 64.18 63.25 65.73 64.43 68.12 68.12

SPECT Heart 84 81.45 77.27 83.61 84 84.39 84.39

Waveform 71.2 79.14 75.78 78.68 72.12 75.77 80.72

Wine 54.55 59.7 63.64 95.83 88.37 95.83 95.83

ηF1 66.05 68.81 66.89 78.33 73.79 79.09 80.57

Table 3.3: Performance in terms of F1 score over 14 one-class datasets (continued).

and precision for 12,12,11 datasets, respectively.

We present the variation in F1 score with the regularization parameter (C) and

kernel parameter (σ) for the KRL-based methods for the Cardiotocography dataset in

Figure 3.3. The difference in the behavior of the boundary-based methods, OCKELM

and VOCKELM, and the reconstruction-based methods, AAKELM and VAAKRL,

is clearly visible in the figure. In the case of OCKELM and VOCKELM, with an
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Figure 3.2: Accuracy, G-mean, Precision and Recall plots for different datasets for
VAAKRL and existing KRL-based one-class classifiers.
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Figure 3.3: Variation of F1 score with regularization parameter (C) and kernel size
(σ) for the Cardiotocography dataset.

increase in the value of σ, the value of the F1 score becomes increasingly constant.

Also, for a constant σ, there is a little variation in the F1 score for varying value of

C. In contrast, for AAKELM and VAAKRL, the F1 score becomes more and more

stable, with an increase in σ and a decrease in C. Also, it can be observed that there

is an evident variation in the F1 score for high values of C and σ.

In OCC, the decision criteria is set by taking a portion of data as outliers (δ) during

training time. For reference, we present the variation of F1 scores of the different KRL-

based methods across different values of fraction of dismissal, namely δ = 1%, 5%,

10%, in Figure 3.4. The observations are noted as follows,

(1) For δ = 1%, VAAKRL achieves the highest F1 score for 8 datasets. Also, VAAKRL
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displays a clear advantage over other methods for 4 datasets, namely, Biomed,

Breast Cancer, Imports, and Waveform.

(2) For δ = 5%, VAAKRL achieves the highest F1 score for 10 datasets. VAAKRL

performs better than the other methods by a wide margin for 2 datasets, namely,

Hepatitis, and Waveform.

(3) For δ = 10%, VAAKRL achieves the highest F1 score for 9 datasets and performs

better than the other methods by a wide margin for 3 datasets, namely, Diabetic

Retinopathy, Imports, and Waveform.

(4) For 7 datasets, VAAKRL scores the highest across all δ values, while showing a

clear advantage in performance for 2 datasets, namely, Imports, and Waveform.

From the above observations (1,2,3), it can be inferred that VAAKRL generally out-

performs other methods for the same value of δ. Also, using a small value of δ usually

gives better results.

When comparing methods, computational complexity is a crucial performance met-

ric. The training time spent on different OCC methods is recorded in Table 3.4. The

training times of all the classifiers, except OCSVM, are recorded on the MATLAB

platform. As OCSVM has used the Mex C++ compiler and not the same environ-

Biomed
Breast

Cancer

Breast

Tissue

Caesar

ian

Cardioto

cography

Colpo

scopy

Diabetic

Retinopathy

Heart

Cleveland

OCRF [84] 0.1163 0.2582 0.0561 0.0658 0.3968 1.1940 0.9092 0.2087

Naive Parzen [86] 1.9521 0.4376 0.1187 0.0714 0.3172 0.6763 0.8659 0.1581

k-means [87] 0.0885 0.0222 0.0197 0.0155 0.0245 0.0147 0.0244 0.0155

1-NN [88] 0.0517 0.0265 0.0145 0.0135 0.0205 0.0131 0.0270 0.0139

k-NN [89] 0.0241 0.0242 0.0145 0.0132 0.0210 0.0131 0.0247 0.0136

Autoencoder [5] 3.9490 0.5733 0.3077 0.2006 2.7101 0.5027 3.1774 2.2721

PCA [85] 0.1520 0.0708 0.0887 0.0460 0.0735 0.0466 0.0371 0.0361

MST [91] 0.0186 0.0206 0.0145 0.0135 0.0211 0.0135 0.0249 0.0196

k-centers [90] 0.3926 0.2027 0.1885 0.1586 0.2012 0.1698 0.2374 0.1939

SVDD [35] 0.1299 0.0281 0.0206 0.0189 0.0658 0.0121 0.0351 0.0125

OCKELM [37] 0.0202 0.0140 0.0036 0.0027 0.0144 0.0023 0.0204 0.0044

VOCKELM [13] 0.0126 0.0104 0.0032 0.0020 0.0123 0.0023 0.0210 0.0048

AAKELM [48] 0.0119 0.0130 0.0034 0.0023 0.0144 0.0025 0.0233 0.0043

VAAKRL 0.0126 0.0122 0.0031 0.0023 0.0151 0.0025 0.0246 0.0038

Table 3.4: Training time (in secs) for different one-class classifiers.
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Figure 3.4: Variation of F1 score with fraction of dismissal (δ) for different datasets
for VAAKRL and existing KRL-based one-class classifiers.

ment as other classifiers, we have not included OCSVM in Table 3.4. In the table, it

can be observed that the training time of VAAKRL is similar to OCKLEM, VOCK-

ELM, and AAKELM. This is expected as all four of them are non-iterative in nature.

However, VAAKRL mostly records the least training time among all other one-class

classifiers (i.e., all classifiers except OCKLEM, VOCKELM, and AAKELM) owing to

its non-iterative approach to learning.
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3.3 Summary

In this chapter, we proposed the minimum variance embedded KRL-based au-

toencoder for OCC. It is a single-layer method and follows a reconstruction-based

approach to OCC. The minimum variance embedding reduces the variance of the tar-

get class data and forces the network output weights to emphasize in regions of low

variance. The proposed method uses reconstruction error to define a threshold crite-

rion to decide the membership of a data sample. The KRL-based autoencoder utilizes

representation learning to build an effective representation of the data at the output

layer. The proposed method consumes less training time in comparison to the exist-

ing iterative learning-based one-class classifiers owing to its non-iterative approach to

learning. The proposed method was experimented on 14 benchmark datasets from

various disciplines and the outcomes were compared with 14 existing one-class classi-

fiers. VAAKRL achieved the highest ηF1 in comparison to other one-class classifiers

and outperformed the non-kernel-based one-class classifiers by a significant margin of

more than 6.9% in terms of ηF1 . VAAKRL has yielded a slightly better ηF1 value

compared to OCKELM (boundary framework-based) and AAKELM (reconstruction

framework-based). Therefore, it is very difficult to declare any single framework-based

one-class classifier as the best classifier.

We further try to improve the performance of the KRL-based one-class classifier.

We combine the concept of the boundary-based and reconstruction-based frameworks

in a multi-layer architecture, and incorporate minimum variance embedding at the

first layer. We explore this OCC architecture in the next chapter.
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Chapter 4

Minimum Variance Embedded Deep

Kernel Regularized Least-Squares Method

for One-class Classification

To enhance the performance of the proposed one-class classifier in the previous

chapter, we develop the Minimum Variance Embedded Deep KRL-based method

for One-class Classification (DKRLVOC) in this chapter. A multi-layer KRL-based

one-class classifier was proposed in the past [38], but it didn’t utilize the minimum

variance information within its architecture. DKRLVOC leverages the minimum vari-

ance embedding to minimize the data dispersion of the target class and force the net-

work output weights to emphasize in areas of low variance. The multi-layer approach

helps to combine both the reconstruction-based and boundary-based frameworks in a

single architecture, hence we refer the proposed architecture as a deep architecture.

The reconstruction-based framework helps to learn an effective representation of the

data by reconstructing the key input features at the output. The boundary-based

framework defines a one-class boundary around the target class using the structural

information of the dataset. We have experimented with the proposed method on 24

benchmark datasets and compared their performance with different state-of-the-art

one-class classifiers based on various performance metrics. We discuss the details of

the proposed method further in Section 4.1.
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4.1 Proposed Method: DKRLVOC

The proposed method, DKRLVOC, follows a deep architecture and minimizes vari-

ance at the first layer to achieve better separation of outliers. We present a schematic

representation of the proposed architecture in Figure 4.1. It consists of mainly three

types of layers viz., (i) minimum variance-embedded KRL-based Autoencoder (KRL-

VAE) (ii) KRL-based Autoencoder (KRLAE) (iii) KRL-based OCC layer (KRLOC).

The layers are stacked sequentially to form a deep architecture. The first layer is the

KRLVAE layer and is responsible for minimizing the variance, the norm of output

weight, and the reconstruction error. The KRLVAE layer is followed by multiple KR-

LAE layers, which are used to extract meaningful information from the data. These

KRLAE layers are responsible for representation learning and help to learn an effective

representation of the data. The last layer is the KRLOC layer, which is a boundary

framework-based OCC layer and is responsible for learning a boundary around the

target class. We have performed the minimum variance embedding only at the first

layer as we observed that minimizing variance in successive layers leads to loss of pat-

tern between the samples, and hence poor generalization performance. Further, we

introduce the formulation of the proposed method.

We represent the training data as, X(1) = {x(1)
i |x

(1)
i ∈ Rd, i = 1, 2, ...,N}, whereN

refers to the number of training samples. The first Q layers of DKRLVOC is composed

of KRL-based autoencoder. We refer the input of the qth layer as, X(q) = {x(q)
i |x

(q)
i ∈

Rd, i = 1, 2, ...,N , q = 1, 2, ..., Q}. Further, we refer the input of the final OCC layer

as, X(f) = {x(f)
i | x

(f)
i ∈ Rd, i = 1, 2, ...,N}. KRLVAE is the first layer (i.e., q = 1),

while the subsequent Q − 1 layers are KRLAE layers (i.e., q = 2, ..., Q). The final

OCC layer is the KRLOC layer. The encoded output of one layer is fed as input to

the next layer.

We propose the following optimization criterion at the first layer (KRLVAE) to

44



 

 

 

 

 

 

 

                                                        (a)                (b)                                                                                  (c) 

 

                                                                                                       

                                                                   

 

 

 

 

Kernel Matrix 
Kernel Matrix 

Kernel Matrix 

Minimum Variance Embedded 

 

 

 

   

    
  )

) 

 

 

  In  

  

    
  )

 

    
  )

 

    
  )

 

    
  )

 

    
  )

 

    
  )

 

    
  )

 
   
  )

 

   
  )

 

   
  )

    
  )

 

   
  )

 

   
  )

 

   
  )

 

   
  )

 

   
  )

 

   
    

 

   
 

   
 

   
 

   )
 

 

(d) 

    
  )

) 

 

 

  In  

    
  )

) 

 

 

  In  

    
  )

) 

 

 

  In      
  )

) 

 

 

  In  

    
  )

) 

 

 

  In  

    
  )

) 

 

 

  In  

    
  )

 

    
  )

 

   )
 

   
    )

 

    
  )

 

    
  )

 

    
  )

 

   
    )

 

   
    )

 

    
  )

) 

 

 

  In  

   )
 

    
  )

 

    
  )

    
  )

 

   
  )

 

    
  )

    
  )

 

    
  )) 

 

 

  In  

Figure 4.1: Architecture of DKRLVOC. (a) Encoded output of KRLVAE layer is fed
as input to next KRLAE layer. (b) Encoded output of each KRLAE is fed as input
to the subsequent KRLAE layer. (c) KRLOC layer takes encoded output of the last
KRLAE layer as input. (d) Shows arrangement of different layers.

minimize the data dispersion and the reconstruction error.

min
β(1),e

(1)
i

1

2
Tr

((
β(1)

)T
(VC + λI) β(1)

)
+
C(1)

2

N∑
i=1

∥∥∥e(1)
i

∥∥∥2
2

(4.1)

s.t.
(
β(1)

)T
h
(
x
(1)
i

)
= x

(1)
i − e

(1)
i , i = 1, 2, ...,N ,

where, e
(1)
i is the reconstruction error, and h

(
x
(1)
i

)
is the non-linear feature mapping

for input x
(1)
i . β(1) is the output weight at the first layer. C(1) acts as a trade-off to

minimize the norm of output weight and the reconstruction error. λ is used to control

the degree of regularization for variance and referred to as the graph regularization

parameter. VC is the class variance. We have discussed the mathematical formulation

for VC in Section 3.1 of Chapter 3. We substitute the expression of VC from equation
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(3.2) in equation (4.1), and obtain the langrangian relaxation for equation (4.1) as,

LKRLV AE =
1

2
Tr

((
β(1)

)T (
H(1)M

(
H(1)

)T
+ λI

)
β(1)

)
+
C(1)

2

N∑
i=1

∥∥∥e(1)
i

∥∥∥2
2

(4.2)

−
N∑
i=1

α
(1)
i

((
β(1)

)T
h
(
x
(1)
i

)
− x(1)

i + e
(1)
i

)
,

where, α(1) = {α(1)
i }, i = 1, 2, ...,N is the langrangian multiplier at the first layer.

Next, we perform further computations as follows:

∂LKRLV AE

∂β(1)
= 0 =⇒ β(1) = α(1)H(1)

(
H(1)M

(
H(1)

)T
+ λI

)−1
, (4.3)

∂LKRLV AE

∂e
(1)
i

= 0 =⇒ E(1) =
α(1)

C(1)
, (4.4)

∂LKRLV AE

∂α(1)
= 0 =⇒ α(1) = C(1)

(
X(1) −

(
β(1)

)T
H(1)

)
. (4.5)

Substituting equation (4.5) in equation (4.3) we get the following expression for output

weight,

β(1) = H(1)

(
H(1)

(
H(1)

)T
+
H(1)M

(
H(1)

)T
C(1)

+
λ

C(1)
I

)−1
X(1). (4.6)

Further, we define a kernel matrix Ω (1) as,

Ω (1) = H(1)
(
H(1)

)T
(4.7)

s.t. Ω
(1)
j,k = h

(
x
(1)
j

)
h
(
x
(1)
k

)
= K

(
x
(1)
j ,x

(1)
k

)
, j, k = 1, ...,N ,

where, K is a kernel function. Using this kernel mapping, we can rewrite equation

(4.6) to obtain the final expression for output weight β(1) as,

β(1) =

(
Ω (1) +

MΩ (1)

C(1)
+

λ

C(1)
I

)−1
X(1). (4.8)

In DKRLVOC, the encoded output of one layer is fed as input to the succeeding layer.
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Hence, the input to the second (i.e., KRLAE) layer is calculated as,

X(2) =


K(x(1),x1)

...

K(x(1),xN )


T (

Ω (1) +
MΩ (1)

C(1)
+

λ

C(1)
I

)−1
X(1). (4.9)

After that, we use (Q − 1) KRLAE layers to learn meaningful information from the

data. We obtain the optimum output weight β(q) by using the following optimization

criterion,

min
β(q),e

(q)
i

1

2

∥∥∥β(q)
∥∥∥2
F

+
C(q)

2

N∑
i=1

∥∥∥e(q)
i

∥∥∥2
2

(4.10)

s.t.
(
β(q)

)T
h
(
x
(q)
i

)
= x

(q)
i − e

(q)
i , i = 1, 2, ...,N , q = 2, 3, ..., Q,

where, C(q) acts as the regularization parameter at the qth layer, and e
(q)
i is the recon-

struction error for the input x
(q)
i . Further, we solve equation (4.10) using langrangian

relaxation as follows,

LKRLAE =
1

2

∥∥∥β(q)
∥∥∥2
F

+
C(q)

2

N∑
i=1

∥∥∥e(q)
i

∥∥∥2
2
−
N∑
i=1

α
(q)
i

((
β(q)

)T
h
(
x
(q)
i

)
− x(q)

i + e
(q)
i

)
,

(4.11)

where, α(q) = {α(q)
i }, i = 1, 2, ...,N is the langrangian multiplier at the qth layer. Next,

we obtain the following derivatives,

∂LKRLAE

∂β(q)
= 0 =⇒ β(q) = α(q)H(q), (4.12)

∂LKRLAE

∂e
(q)
i

= 0 =⇒ E(q) =
α(q)

C(q)
, (4.13)

∂LKRLAE

∂α(q)
= 0 =⇒ α(q) = C(q)

(
X(q) −

(
β(q)

)T
H(q)

)
. (4.14)

We obtain the expression for output weight β(q) by substituting equation (4.14) in

equation (4.12),

β(q) = H(q)

(
1

C(q)
I +H(q)

(
H(q)

)T)−1
X(q). (4.15)

47



Using kernelized feature mapping similar to equation (4.7), we rewrite equation (4.15)

to obtain the final expression for output weight β(q) as,

β(q) =

(
1

C(q)
I + Ω (q)

)−1
X(q). (4.16)

The input to the (q + 1)th layer is expressed as,

X(q+1) =


K(x(q),x1)

...

K(x(q),xN )


T (

1

C(q)
I + Ω (q)

)−1
X(q), q = 2, 3, ..., Q. (4.17)

Here, X(Q+1) is used to refer X(f), which is the input to the final layer (KRLOC).

At the final layer, the output weight β(f) is derived using the following optimization

problem,

min
β(f),e

(f)
i

1

2

∥∥∥β(f)
∥∥∥2
2

+
C(f)

2

N∑
i=1

∥∥∥e(f)i

∥∥∥2
2

(4.18)

s.t.
(
β(f)

)T
h
(
x
(f)
i

)
= r − e(f)i , i = 1, 2, ...,N ,

where, e
(f)
i is the training error for input x

(f)
i . r is a real number, referred to as the

target class. It is generally taken as 1. Solving the above minimization problem in a

similar way as equation (4.10), the output weight β(f) is derived as,

β(f) =

(
1

C(f)
I + Ω (f)

)−1
r, (4.19)

where, r = [r, ..., r]T ∈ RN . Finally, the network output of DKRLVOC at the time of

training is calculated as,

Ô =


K(x(f),x1)

...

K(x(f),xN )


T (

1

C(f)
I + Ω (f)

)−1
r. (4.20)
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The training samples are used to determine the threshold (θ) as follows,

(1) We calculate the distance between the network output Ôi and the target label r

for each training sample xi as,

s(i) =
∣∣∣Ôi − r

∣∣∣ . (4.21)

(2) Further, we sort the vector s in decreasing order and denote it as sdec. We dismiss

a small percentage of training data as outliers. The samples having maximum

distance from the target class are treated as outliers first, as they deviate most

from the target class distribution. The threshold is then decided as,

θ = sdec (bδ ∗ Nc) , 0 ≤ δ ≤ 1, (4.22)

where, δ is the fraction of dismissal.

For each test sample xt, we calculate the input x
(q+1)
t for the subsequent layers as

follows,

x
(q+1)
t =


K(x

(q)
t ,x1)
...

K(x
(q)
t ,xN )


T

β(q), q = 1, 2, ..., Q. (4.23)

Here, x
(Q+1)
t is used to refer x

(f)
t , which is the test input to the final layer. Further,

the test network output is calculated as,

Ôt =


K(x

(f)
t ,x1)
...

K(x
(f)
t ,xN )


T

β(f). (4.24)

Finally, we calculate the distance of the test network output from the target class as,
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Algorithm 4.1 DKRLVOC

Given:
Training dataset: X(1), Number of KRL Autoencoder layers: Q, Regularization pa-
rameter: C(q) for layer q = 1, ..., Q and C(f) for final layer, Graph regularization
parameter: λ, Fraction of dismissal: δ
Training:

1: for q = 1, 2, ..., Q layers do
2: if q == 1 then
3: Calculate kernel matrix Ω (1) using 4.7 and output weight β(1) using (4.8).
4: Calculate input, X(2), for the second layer using (4.9).
5: else
6: Calculate kernel matrix Ω (q), followed by output weight β(q) using (4.16).
7: Calculate input, X(q+1), using (4.17). . X(Q+1) refers X(f)

8: end if
9: end for

10: Calculate kernel matrix Ω (f), followed by output weight β(f) using (4.19).

11: Calculate network output Ô using (4.20).
12: Calculate threshold θ using (4.22).

Testing:

1: for q = 1, 2, ..., Q layers do
2: Calculate test input, x

(q+1)
t , using (4.23). . x

(Q+1)
t refers x

(f)
t

3: end for
4: Calculate network output Ôt using (4.24).
5: Calculate distance st and classify xt using (4.25).

st =
∣∣∣Ôt − r

∣∣∣, and perform OCC based on the following decision function,

sign(θ − st) = 1, xt belongs to target class, (4.25)

− 1, xt belongs to outlier class.

We provide the implementation steps for the proposed method in Algorithm 4.1. Fur-

ther, in Section 4.2, we discuss the experimental results for DKRLVOC on different

datasets and compare the results with various exiting state-of-the-art one-class classi-

fiers.
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4.2 Experiments

Matlab R2016a is used for all the trials running on a PC with Intel Core i5 3.10

GHz CPU, 32 GB RAM. In the experiments, we have used a three-layered (Q = 2)

DKRLVOC architecture, that is, the initial KRLVAE layer, the intermediate KRLAE

layer, and the final KRLOC layer. We have limited the number of layers to three, as we

found that with an increase in the number of layers, there is a loss of pattern between

the samples. This leads to poor generalization performance. In the experiments,

we have taken the value of the graph regularization parameter (λ) as 1. We have

used 5-fold cross-validation to select the optimal parameters from a range of values

as outlined further. The regularization parameters C(q) and C(f) is selected from the

range {2−5, 2−4, ...., 25}. The value of k for k-means clustering is selected from the

range {1, 2, ...., 10}. k-means clustering is used to group data into sub-classes. The

value of the fraction of dismissal (δ) is selected from the range {0.01, 0.05, 0.1}. All

the methods employ the RBF kernel, which can be calculated for data points xi and

xj as follows:

k(xi, xj) = exp

(
−
‖xi − xj‖22

2σ2

)
, (4.26)

where, we use the mean of the euclidean distance across different training samples to

obtain σ. All the existing and proposed one-class classifiers have been implemented

and tested in the same environment to ensure a fair comparison. The source code of

DKRLVOC is available at Github.1.

We have conducted experiments on 24 UCI benchmark one-class datasets, among

which there are 14 small-size datasets and 10 medium-size datasets. The datasets

have been downloaded from the UCI Machine Learning Repository [82]. The medium-

size one-class datasets have been obtained from the multi-class optical digit dataset,

comprised of 10 classes. We have followed an existing approach [83] to convert the

multi-class dataset into one-class datasets. We have done this by taking one of the

classes as target and the rest of the classes as outliers in an iterative manner. In this

way, we were able to generate 10 medium-size one-class datasets. The samples with

1https://github.com/PratikMishra/Deep-Kernel-Learning-for-One-class-Classification
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S.no. Datasets
#Total

Samples
#Target #Outlier #Features

Target

Class

1 Arrhythmia 420 183 237 278 Abnormal

2 Biomed 194 67 127 5 Diseased

3 Breast Cancer1 699 458 241 9 Benign

4 Caesarian 80 34 46 5 0

5 Cancer2 198 151 47 33 Non Recurring

6 Cardiotocography 2126 176 1950 22 Pathologic

7 Colposcopy3 97 82 15 62 Good

8 Cryotherapy 90 48 42 6 1

9 Hepatitis 155 123 32 19 Normal

10 SPECT Heart 349 254 95 44 Abnormal

11 Survival 306 225 81 3 Greater than 5 year

12 Glass Building 214 76 138 9 Non float

13 Ionosphere 351 126 225 34 Bad

14 Iris 150 50 100 4 Setosa

1 Refers to Wisconsin Breast Cancer UCI dataset.
2 Refers to Wisconsin Prognostic Breast Cancer UCI dataset.
3 Colposcopy dataset with modality hinselmann is used for experimental purpose.

Table 4.1: Specification of small-size one-class datasets.

any missing feature values have been removed. We have normalized all the features

with a mean 0 and standard deviation 1 using z-score. We have used 50% of the target

and outlier class samples for 5-fold cross-validation and the other 50% as the test set.

It is important to note that we have used samples from only the target class to train

the model.

Further, we have divided this section into two parts on the basis of the size of

datasets used for the experiments. In Section 4.2.1 and 4.2.2, we provide experi-

mental results and performance evaluations on small-size and medium-size datasets,

respectively.

4.2.1 Small-size datasets

We have conducted experiments on 14 small-size UCI benchmark one-class

datasets. The specifications of these datasets is provided in Table 4.1. We have

compared the performance of DKRLVOC with 14 existing state-of-the-art one-class

classifiers over 14 datasets in Tables 4.2 and 4.3. Due to the limitation in page width,

the results are divided into two tables. The upper rows in the tables list the name

of classifiers, the first column lists the datasets, and the last row lists the mean F1
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OCRF

[84]

Naive

Parzen[86]

k-means

[87]

1-NN

[88]

k-NN

[89]

Autoencoder

[5]

PCA

[85]

MST

[91]

k-centers

[90]

Arrhythmia 60.67 60.67 60.67 58.98 60.67 58.5 57.44 60.67 59.73

Biomed 51.16 45.53 50 48.82 50 38.26 48.54 50 44.04

Breast Cancer 79.24 90.95 94.98 92.99 95.69 95.48 93.51 95.69 95.28

Caesarian 59.65 59.46 53.66 51.16 51.16 53.66 60.38 51.16 50

Cancer 82.42 73.83 86.39 82.58 86.39 79.49 79.75 86.39 84.34

Cardiotocography 15.29 39.07 25.81 39.39 34.08 55.51 35.58 34.08 26.76

Colposcopy 87.06 81.08 89.66 89.66 90.91 88.37 86.75 90.91 89.66

Cryotherapy 69.57 77.55 69.39 73.68 71.64 71.11 77.78 80 74.07

Hepatitis 88.41 86.18 88.41 88.41 88.41 88.89 88.89 88.41 88.41

SPECT Heart 84.39 79.58 84.39 79.17 84.39 84.39 80.41 84.39 84

Survival 85.17 83.33 84.94 83.74 83.87 83.79 83.27 82.95 81.36

Glass Building 52.41 51.49 53.1 55.36 52.34 58.41 55.93 52.34 55.1

Ionosphere 56.11 62.34 51.69 51.69 52.32 52.94 41.62 52.32 52.32

Iris 50 78.05 93.62 91.3 95.83 93.62 80.95 97.96 88.89

ηF1 65.83 69.22 70.48 70.5 71.26 71.6 69.34 71.95 69.57

Table 4.2: Performance in terms of F1 score over 14 small-size datasets.

OCSVM

[1]

SVDD

[35]

KRL-based methods

Single-layer Multi-layer

OCKELM

[37]

VOCKELM

[13]

ML-OCKELM

[38]
DKRLVOC

Arrhythmia 57.04 56.12 59.46 58.95 60.67 60.67

Biomed 47.79 48.21 47.37 53.06 47.71 53.45

Breast Cancer 93.85 93.74 95.28 76.68 95.26 95.96

Caesarian 62.86 55.17 53.66 61.11 59.65 62.96

Cancer 84.66 83.02 84.02 86.05 84.02 86.71

Cardiotocography 17.17 19.15 63.76 63.45 69.79 70.53

Colposcopy 86.75 82.05 90.48 85 89.66 92.13

Cryotherapy 75.47 75.47 77.78 75.56 78.43 80

Hepatitis 84.85 86.57 88.89 88.89 87.22 89.39

SPECT Heart 81.45 77.27 83.61 84 84 84.39

Survival 79.01 80.17 83.72 81.57 84.25 85.49

Glass Building 58.59 59.18 56.25 58.33 54.55 62.5

Ionosphere 46.7 42.53 52.94 53.45 60.42 66.29

Iris 68.42 64.86 83.72 93.62 100 100

ηF1 67.47 65.97 72.92 72.84 75.4 77.89

Table 4.3: Performance in terms of F1 score over 14 small-size datasets (continued).

score (ηF1) for each classifier. Since we have to compare multiple classifiers on various

datasets, we compute mean of all F1 scores (ηF1) over all datasets by taking inspiration

from an existing work [81]. We consider ηF1 as the final evaluation measure to rank

the classifiers as per their performance. DKRLVOC achieves the highest ηF1 over all

the datasets (highlighted in bold red in Table 4.3) in comparison to other one-class

classifiers, with a significant difference of 5.94% when compared with non-KRL-based
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methods. When compared to single-layer KRL-based methods, there is an improve-

ment of 4.97% in terms of ηF1 . Also, it can be noted that DKRLVOC obtains the

highest F1 score for all 14 datasets, with a few classifiers obtaining identical values

for some datasets. DKRLVOC achieves this by reducing the variance and minimizing

the reconstruction error using multiple KRL-based autoencoders stacked sequentially.

The minimum variance embedding helps to minimize the data dispersion, and the re-

construction property helps to learn the essential features from the input data. They

grant DKRLVOC a boost in performance over other one-class classifiers.

For reference purpose, we also present the experimental results based on accuracy,

g-mean, precision, and recall metrics for DKRLVOC along with other KRL-based

methods in Figure 4.2. DKRLVOC achieves the highest accuracy for 11 out of 14

datasets. Further, DKRLVOC scored highest g-mean, precision, and recall for 14,

10, and 10 datasets, respectively, as compared to other single-layer and multi-layer

KRL-based classifiers. The efficiency of DKRLVOC is evident from the observation

that it performs overwhelmingly better than the other methods by scoring the highest

accuracy, g-mean, precision, and recall for 11, 14, 10, and 10 datasets, respectively.

In OCC, the decision criteria is set by taking a portion of data as outliers (δ) during

training time. For reference, we present the variation of F1 scores of the different

KRL-based methods across different values of fraction of dismissal, namely δ = {1%,

5%, 10%}, in Figure 4.3. It can be observed that DKRLVOC performs better than

the other methods mostly for δ = 1%. Hence, DKRLVOC gives a better performance

for small values of δ.

Further, in Section 4.2.2, we present the performance evaluation of DKRLVOC for

medium-size datasets.

4.2.2 Medium-size datasets

We have conducted experiments on 10 medium-size one-class datasets. The

datasets are obtained from the multi-class optical digit dataset using the method

described in Section 4.2. The specifications of these one-class datasets is provided in

Table 4.4.
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Figure 4.2: Accuracy, G-mean, Precision and Recall plots for DKRLVOC and existing
KRL-based one-class classifiers for small-size datasets.
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Figure 4.3: Variation of F1 score with fraction of dismissal (δ) for DKRLVOC and
existing KRL-based one-class classifiers for small-size datasets.
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The F1 scores for DKRLVOC and the existing KRL-based one-class classifiers for

optical digit one-class datasets are provided in Table 4.5. For reasons of computational

limitation for medium-size datasets, we present F1 scores for KRL-based methods only.

The last row lists the mean F1 score (ηF1) for each classifier. DKRLVOC achieves the

highest ηF1 over all the datasets (highlighted in bold red in Table 4.5) in comparison

to other KRL-based one-class classifiers, with a significant difference of 6.9% when

compared to single-layer KRL-based methods. Also, it can be noted that DKRLVOC

obtains the highest F1 score for 7 out of 10 datasets (highlighted in blue in Table 4.5).

For reference, we also present the experimental results based on accuracy, g-mean,

precision, and recall metrics for DKRLVOC along with other KRL-based methods for

optical digit datasets in Figure 4.4. DKRLVOC achieves the highest accuracy for 7 out

of 10 datasets. Further, DKRLVOC scores the highest g-mean, precision, and recall for

7, 5, and 7 datasets, respectively, as compared to the other single-layer and multi-layer

KRL-based classifiers. The efficiency of DKRLVOC is evident from the observation

that it performs better than the other methods by scoring the highest accuracy, g-

mean, and recall for 7, 7, and 7 datasets, respectively. In OCC, the decision criteria

is set by taking a portion of data as outliers (δ) during training time. For reference,

we present the variation of F1 scores of the different KRL-based methods for optical

digit datasets across different values of fraction of dismissal, namely δ = {1%, 5%,

10%}, in Figure 4.5. It can be observed that mostly for δ = 1%, DKRLVOC performs

better than the other methods. Further, it can be observed that for 7 out of 10 cases,

the curve of DKRLVOC decreases with an increase in the value of δ. The above

observations suggest the improved performance of the method for low values of δ.

Also, the multi-layer methods generally perform better than the single-layer methods,

as the sequentially stacked reconstruction-based layers in multi-layer methods help to

identify the essential information in the data.
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Target

Class
#Target #Outlier #Features

Class 0 554 5066 64

Class 1 571 5049 64

Class 2 557 5063 64

Class 3 572 5048 64

Class 4 568 5052 64

Class 5 558 5062 64

Class 6 558 5062 64

Class 7 566 5054 64

Class 8 554 5066 64

Class 9 562 5058 64

Table 4.4: Specification of medium-size optical digit one-class datasets.

Single-layer methods Multi-layer methods

OCKELM

[37]

VOCKELM

[13]

ML-OCKELM

[38]
DKRLVOC

Class 0 98.19 97.6 98.73 98.56

Class 1 75.04 68.45 94.27 95.9

Class 2 86.3 79.06 96.38 95.51

Class 3 80.45 78.26 91.16 91.31

Class 4 83.67 82.55 88.12 89.82

Class 5 90.81 85.86 90.09 92.39

Class 6 96.96 98 97.15 97.67

Class 7 91.16 89.52 93.59 93.61

Class 8 69.43 64.67 73 76.74

Class 9 73.5 78.06 74.86 83.03

ηF1 84.55 82.2 89.74 91.45

Table 4.5: Performance in terms of F1 score over 10 medium-size optical digit one-class
datasets.
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Figure 4.4: Accuracy, G-mean, Precision and Recall plots for DKRLVOC and existing
KRL-based one-class classifiers for optical digit datasets.
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Figure 4.5: Variation of F1 score with fraction of dismissal (δ) for DKRLVOC and
existing KRL-based one-class classifiers for optical digit datasets.
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4.3 Summary

In this chapter, we proposed the minimum variance embedded deep KRL-based

method for OCC. We proposed to embed minimum variance information in the ini-

tial reconstruction-based layer in a multi-layer architecture and used KRL as a base

classifier to perform OCC. The minimum variance embedding helped to minimize

the data dispersion and forced the network output weights to focus in regions of low

variance. The proposed method follows a deep architecture and comprises initial Q

reconstruction-based layers and a final boundary-based OCC layer. As such, we were

able to leverage both reconstruction and boundary-based approaches to achieve better

performance than the existing one-class classifiers. The reconstruction-based layers re-

construct the essential information of the input data at the output layer, and utilize

both representation learning and kernel learning to learn an effective representation

of the input data. The final boundary-based layer was used to learn a boundary

around the target class and perform OCC. We performed experiments on 24 bench-

mark datasets (14 small-size and 10 medium-size) and compared the performance

with 14 existing state-of-the-art one-class classifiers. For small-size datasets, it was

observed that DKRLVOC achieved the highest ηF1 in comparison to other one-class

classifiers, with a significant difference of 5.94% when compared with non-KRL-based

methods. When compared to single-layer KRL-based methods, there was an improve-

ment of 4.97% in terms of ηF1 . For medium-size datasets as well, DKRLVOC scored

the highest ηF1 with a significant difference of 6.9% compared to single-layer KRL-

based methods. It can be concluded that DKRLVOC was able to outperform other

existing one-class classifiers over a range of datasets.

Further, in the next chapter, we utilize DKRLVOC for the identification of

Alzheimer’s and Breast cancer disease.
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Chapter 5

Application of DKRLVOC: Identification

of Alzheimer’s and Breast Cancer Disease

In this chapter, we present the applicability of the proposed method, DKRLVOC,

for the identification of Alzheimer’s and Breast Cancer diseases using structural mag-

netic resonance image (sMRI) and histopathological image, respectively. Alzheimer’s

disease results in the degeneration of brain cells in a person. It is the most usual cause

of dementia, where a person experiences a steady decline in his reasoning, behavioral

and social skills leading to a disruption of his ability to function independently. It

begins with forgetting recent events and conversations, further leading to severe im-

pairment of memory and loss of ability to carry out everyday tasks. Breast cancer

occurs due to the abnormal growth of some breast cells. A lump is formed due to the

rapid division and continuous accumulation of these cells. The cells can spread to the

lymph nodes or to the other parts of the body. In this chapter, we present the exper-

iments and outcomes of our proposed method DKRLVOC on real-world biomedical

datasets and compare the performance with existing one-class classifiers.

Further, we present the experimental discussion and results of DKRLVOC for the

identification of Alzheimer’s and Breast Cancer in Sections 5.1 and 5.2, respectively.
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(a) Control normal (CN) (b) Alzheimer’s disease (AD)

Figure 5.1: sMRI images of Control Normal (CN) and Alzheimer’s disease (AD) sub-
jects from ADNI database.

5.1 Alzheimer’s Disease

We have conducted experiments to identify Alzheimer’s disease using sMRI. The

sMRI data was procured from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database1. In particular, we have used 100 T1-weighted sMRIs comprising of 50 control

normal (CN) and 50 Alzheimer’s disease (AD) subjects. We present the sMRI for CN

and AD subjects in Figure 5.1. The degeneration of neurons can be observed in the AD

subject in Figure 5.1(b). In the ADNI dataset that we have used for our experiments,

the subjects have their age varying in the range 60-90, with a mean age of 75.83 and

a standard deviation of 6.07. We have used the Freesurfer software v6.0.1 recon-all

pipeline [94, 95] to process the images and obtain volume and thickness measures of

the brain. The processing yielded 34 cortical thickness measures, 23 subcortical tissue

volumes, and 34 white matter tissue volumes for each image. We have normalized the

volumetric data for variation in head size with division by total intracranial volume.

In our experiments, we have used an 80%-20% train-test split ratio, meaning 80% of

target and outlier samples are used for 5-fold cross-validation, and 20% is used for

testing. 5-fold cross-validation is used to select optimal value for the parameters. The

1adni.loni.usc.edu
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Target Class #Target #Outlier #Features

CN vs. AD CN 50 50 91

AD vs. CN AD 50 50 91

Table 5.1: Dataset specifications for the two cases of Alzheimer’s disease identification.

optimal value for the regularization parameters C(q) and C(f) is selected from the range

{2−3, 2−2, ...., 23}. The number of clusters for k-means clustering is selected from the

range {1, 2, ...., 10}. The value of the fraction of dismissal (δ) is selected from the

range {0.01, 0.05, 0.1}. All the methods employ the RBF kernel.

The datasets used for the experiments comprise of samples from two classes, that

is, CN and AD. We perform experiments for the identification of Alzheimer’s disease

by considering two cases. The specifications for both cases are presented in Table 5.1.

In the first case (i.e., CN vs. AD), we train the DKRLVOC model on the CN data,

while in the second case (i.e., AD vs. CN), we train the model on AD data. Further,

for each case, we use four different measures, namely, All features, Cortical thickness,

Subcortical volume, and White matter volume, to train the model. We present and

compare the results for both the cases with the existing kernel-based one-class clas-

sifiers in Table 5.2. In the table, the upper rows list both the cases along with all

four measures for each case. The first column lists the existing kernel-based one-class

classifiers and DKRLVOC, while the last column lists the ηF1 values for each classifier

CN vs. AD AD vs. CN ηF1

All

features

Cortical

thickness

Subcortical

volume

White

matter

volume

All

features

Cortical

thickness

Subcortical

volume

White

matter

volume


CN

vs.

AD


OCSVM

[1]
70.59 81.82 74.07 66.67 53.85 64.29 80 40 73.29

SVDD

[35]
62.5 77.78 69.57 66.67 58.33 61.54 75 43.48 69.13

OCKELM

[37]
80 81.82 69.23 66.67 66.67 68.97 66.67 66.67 74.43

VOCKELM

[13]
76.19 81.82 69.23 66.67 62.07 66.67 75 66.67 73.48

ML-OCKELM

[38]
80 86.96 69.23 76.92 62.07 66.67 64.29 66.67 78.28

DKRLVOC 81.82 86.96 75 76.92 64 68.97 76.92 66.67 80.18

Table 5.2: Performance in terms of F1 score over different measures for the two cases
of Alzheimer’s disease identification.
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for the CN vs. AD case. Note that we have used ηF1 as the final metric for the per-

formance evaluation of DKRLVOC against the existing one-class classifiers. In Table

5.2, it can be observed that the scores for AD vs. CN are generally less than the cor-

responding scores for CN vs. AD cases for the same measure. The reason for the same

can be attributed to the variation in neurodegeneration in AD patients. Hence, we

conclude that training the one-class models on CN data is more efficient than training

on AD data. Also, for the CN vs. AD case, the measures all features and cortical

thickness report better F1 scores than the other measures, leading to the conclusion

that all features and cortical thickness are prominent measures for the identification of

Alzheimer’s from sMRIs. Since training on CN vs. AD case was observed to be more

efficient than training on AD vs. CN case, we have reported ηF1 values for CN vs. AD

case only in Table 5.2. DKRLVOC scored the highest ηF1 (highlighted in bold red) in

comparison to other one-class classifiers, with a significant increase of 6.89% against

non-KRL-based methods, i.e., OCSVM and SVDD. Additionally, DKRLVOC showed

an improvement of 5.75% against single-layer KRL-based methods, i.e., OCKELM and

VOCKELM. Also, DKRLVOC scored the highest F1 score in comparison to most of the

other one-class classifiers for all four measures in the CN vs. AD case (highlighted in

blue). The comparatively better performance of DKRLVOC can be attributed to the

fact that DKRLVOC uses minimum variance embedding, which helps to minimize the

data dispersion. Further, the multiple sequentially stacked KRL-based autoencoders

help to learn the essential features from the input data.

We present the variation in the performance of the one-class classifiers for different

train-test split ratios in Figure 5.2. The following observations can be made from the

figure,

(1) As can be seen in Figures 5.2(a), 5.2(c), and 5.2(d), DKRLVOC usually achieves

a better F1 score than other one-class classifiers in most train-test splits. This

signifies that it generally does a better job of identifying Alzheimer’s than the

other classifiers.

(2) Figures 5.2(a) and 5.2(b) show a better F1 score for the one-class classifiers over
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(d) White matter volume

Figure 5.2: Variation of F1 score over different train-test splits for various measures
of Alzheimer’s disease dataset.
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(d) Recall

Figure 5.3: Accuracy, G-mean, Precision and Recall plots for different measures of
Alzheimer’s disease dataset.

67



different train-test splits than the other two measures in Figure 5.2. It helps us to

conclude that all features and cortical thickness are more prominent in identifying

Alzheimer’s from sMRI images.

(3) The maximum F1 score is reported for DKRLVOC at 80-20 train-test split for 3

out of 4 measures, as can be seen in Figures 5.2(b), 5.2(c), and 5.2(d). The reason

can be attributed to the fact that more training data is available in the 80-20

train-test split.

(4) It can be observed that for the lower train-test splits, the F1 score for all the

one-class classifiers is reported to be in close proximity. This signifies that for less

training data, all the classifiers have similar performance.

For reference, we also present the experimental results based on accuracy, g-mean,

precision, and recall metrics for DKRLVOC and other KRL-based methods in Figure

5.3. It can be observed that out of 4 cases, DKRLVOC achieves the highest accuracy,

g-mean, precision, and recall for 4, 4, 4, and 3 cases, respectively.

Further, in Section 5.2, we apply DKRLVOC for the identification of breast cancer

disease and compare the results with other one-class classifiers.

5.2 Breast Cancer Disease

We have conducted experiments to identify breast cancer by training the DKR-

LVOC model on BreakHis [39] histopathological image dataset and compare the re-

sults with the existing kernel-based one-class classifiers. For this purpose, we use

1240 images with 400X magnification from the dataset. The selected images belong

to either of the two categories, benign or malignant. The benign category consists of

four subclasses, namely, adenosis (AN), fibroadenoma (FA), phyllodes tumor (PT),

and tubular adenoma (TA) comprising of 106, 237, 115, and 130 images, respectively.

Further, the malignant category consists of four subclasses, namely, ductal carcinoma

(DC), lobular carcinoma (LC), mucinous carcinoma (MC), papillary carcinoma (PC)

comprising of 208, 137, 169, and 138 images, respectively. We have transformed the
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(a) Original image (b) Horizontal

(c) Vertical (d) Diagonal

Figure 5.4: Histopathological image of (a) ductal carcinoma. Image of different detail
coefficients obtained after wavelet transform on image (a) are shown in subfigures
(b)-(d).

original images into grayscale images to extract the essential features and performed a

wavelet transform using Daubechies-4 wavelet up to 3 levels of decomposition [96, 97],

as shown in Figure 5.4. We have obtained the feature vectors by concatenating the

approximation and detail coefficients. The feature vectors are not normalized. The

rest of the experimental setup is kept the same as the setup in Section 5.1. Each of

the benign and malignant categories consists of 4 subclasses. We have considered all

possible pairs between two categories and obtained 16 one-class datasets, such that

each one-class dataset contains samples from a subclass of both the categories. The

specifications of these one-class datasets are provided in Table 5.3. The subclass from

the benign category is always kept as the target class. The datasets are prepared in

this manner to show the ability of DKRLVOC in identifying non-cancerous tumor in

all possible pairs of benign and malignant categories.

We present the results for the experiments on the one-class breast cancer datasets
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Target Class Outlier Class #Target #Outlier #Features

AN Vs. DC Adenosis Ductalcarcinoma 106 208 768

AN Vs. LC Adenosis Lobularcarcinoma 106 137 768

AN Vs. MC Adenosis Mucinouscarcinoma 106 169 768

AN Vs. PC Adenosis Papillarycarcinoma 106 138 768

FA Vs. DC Fibroadenoma Ductalcarcinoma 237 208 768

FA Vs. LC Fibroadenoma Lobularcarcinoma 237 137 768

FA Vs. MC Fibroadenoma Mucinouscarcinoma 237 169 768

FA Vs. PC Fibroadenoma Papillarycarcinoma 237 138 768

PT Vs. DC Phyllodes tumor Ductalcarcinoma 115 208 768

PT Vs. LC Phyllodes tumor Lobularcarcinoma 115 137 768

PT Vs. MC Phyllodes tumor Mucinouscarcinoma 115 169 768

PT Vs. PC Phyllodes tumor Papillarycarcinoma 115 138 768

TA Vs. DC Tubular adenoma Ductalcarcinoma 130 208 768

TA Vs. LC Tubular adenoma Lobularcarcinoma 130 137 768

TA Vs. MC Tubular adenoma Mucinouscarcinoma 130 169 768

TA Vs. PC Tubular adenoma Papillarycarcinoma 130 138 768

Table 5.3: Specification of Breast Cancer one-class datasets. Here, AN, FA, PT, TA,
DC, LC, MC, PC refer to Adenosis, Fibroadenoma, Phyllodes tumor, Tubular ade-
noma, Ductalcarcinoma, Lobularcarcinoma, Mucinouscarcinoma, and Papillarycarci-
noma, respectively.

OCSVM

[1]

SVDD

[35]

OCKELM

[37]

VOCKELM

[13]

ML-OCKELM

[38]
DKRLVOC

AN Vs. DC 79.07 71.43 76.6 75 79.17 79.17

AN Vs. LC 58.06 49.12 63.64 63.64 61.76 60.61

AN Vs. MC 64.41 50.98 61.76 57.58 60.61 63.64

AN Vs. PC 72.73 66.67 76.6 76.6 74.51 76.92

FA Vs. DC 67.2 66.12 69.7 81.82 71.21 72

FA Vs. LC 74.58 72.07 76.67 76.67 75.63 78.33

FA Vs. MC 71.19 67.86 72 72.44 73.6 73.6

FA Vs. PC 75.68 72.9 76.67 77.05 77.69 81.03

PT Vs. DC 59.7 65.57 64.52 73.08 66.67 76

PT Vs. LC 57.58 56.25 63.89 61.11 61.97 66.67

PT Vs. MC 52.94 49.23 60.53 60.53 61.97 58.82

PT Vs. PC 66.67 61.82 66.67 66.67 70 66.67

TA Vs. DC 52.87 54.76 55.56 55.32 55.56 63.49

TA Vs. LC 53.52 52.17 60.53 65.82 60.53 65.82

TA Vs. MC 51.85 51.85 60.47 60.47 65.82 67.53

TA Vs. PC 59.46 62.86 59.74 63.49 54.79 60.27

ηF1 63.59 60.73 66.6 67.96 66.97 69.41

Table 5.4: Performance in terms of F1 score over different Breast Cancer datasets.
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for DKRLVOC and the other existing kernel-based one-class classifiers in Table 5.4.

As evident from the table, DKRLVOC obtained the highest ηF1 score (highlighted in

bold red) in comparison to other one-class classifiers, with a significant increase of

5.82% against non-KRL-based methods, i.e., OCSVM and SVDD. Also, DKRLVOC

performed better than the other methods for 10 out of 16 datasets (highlighted in

blue), obtaining the highest score of 81.03 for the case FA Vs. PC. The reduction in

intra-class variance at first layer helps in better separation of target class from outliers

leading to improved performance of DKRLVOC. Further, the presence of multiple

reconstruction-based layers helps to learn the essential features from input data. The

above observations show that DKRLVOC can be successfully applied in the biomedical

field.

For reference, we also provide the experimental results based on accuracy, g-mean,

precision, and recall metrics for DKRLVOC along with other KRL-based methods in

Figure 5.5. As evident, DKRLVOC obtains the best accuracy, g-mean, precision, and

recall against other one-class classifiers for 10, 11, 10, and 9 datasets, respectively.

Further, we present the variation in the performance of the one-class classifiers for

different train-test split ratios in Figure 5.6. Note that only the target class samples

are used for training the one-class classifiers. It can be observed from the figure that

for the datasets which have less number of target class samples, the score obtained

by the classifiers over different train-test splits is relatively low. For the datasets

having relatively more number of target class samples, i.e., datasets with target class

fibroadenoma, the scores are consistently better. This can be seen in Figures 5.6(e),

5.6(f), 5.6(g), and 5.6(h).
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Figure 5.5: Accuracy, G-mean, Precision and Recall plots for Breast Cancer disease
one-class datasets.
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Figure 5.6: Variation of F1 score over different train-test splits for Breast Cancer
disease one-class datasets.
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5.3 Summary

In this chapter, we applied the proposed method, DKRLVOC, to identify

Alzheimer’s disease using sMRI data and Breast Cancer using histopathological image

datasets. For the detection of Alzheimer’s disease, we utilized four measures, namely,

All features, Cortical thickness, Subcortical volume, and White matter volume, to

train DKRLVOC and the other one-class classifiers. We considered two approaches to

training the DKRLVOC model. In the first approach, we trained the model using the

data of normal (CN) subjects, while in the second approach, we trained the model us-

ing the data from diseased (AD) subjects. It was observed that it was more efficient to

train the model using CN data, rather than AD data. This was attributed to the vari-

ation in neurodegeneration in AD patients. Further, it was found that all features and

cortical thickness are prominent measures for the identification of Alzheimer’s from

sMRI images. DKRLVOC scored the highest ηF1 in comparison to other one-class

classifiers. DKRLVOC reported an improvement of 6.89% against non-KRL-based

methods, i.e., OCSVM and SVDD, and 5.75% against single-layer KRL-based meth-

ods, i.e., OCKELM and VOCKELM. For the detection of Breast Cancer, we prepared

16 one-class datasets, where each dataset was comprised of samples from one of the

four subclasses of both benign and malignant categories. The aim was to explore how

efficiently DKRLVOC can identify the non-cancerous tumor in each case. It was ob-

served that DKRLVOC obtained the highest ηF1 score in comparison to other one-class

classifiers, with a significant increase of 5.82% against non-KRL-based methods, i.e.,

OCSVM and SVDD. The better performance of DKRLVOC against other one-class

classifiers is attributed to the utilization of minimum variance information that helps

to minimize the data dispersion, leading to better separation of the target class samples

from the outliers. Further, the presence of multiple reconstruction-based layers helps

to learn the essential information from the input data. From the above observations, it

can be concluded that DKRLVOC is a better alternative to the existing kernel-based

one-class classifiers for the identification of Alzheimer’s and Breast Cancer diseases.
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Chapter 6

Conclusions and Future Work

This thesis primarily explored the concept of variance minimization for the

reconstruction-framework KRL-based approach for OCC. We leveraged minimum vari-

ance embedding to minimize the data dispersion and combined it with representation

learning and kernel learning to learn an effective representation of the input data.

First, we developed the single-layer minimum variance embedded auto-associative

KRL-based one-class classifier. The proposed method follows a reconstruction-based

approach to OCC and uses KRL-based autoencoders to learn an efficient representa-

tion of the input data. Second, we developed the minimum variance embedded deep

KRL-based method for OCC. The proposed method follows a multi-layer architecture

and utilizes minimum variance information at the first layer. Further, it is composed

of multiple KRL-based reconstruction-based layers stacked sequentially and a final

boundary-based OCC layer. The proposed methods were tested on various bench-

mark datasets, and the results were compared with different existing state-of-the-art

one-class classifiers. Further, we applied the DKRLVOC method for the identification

of Alzheimer’s and Breast Cancer disease. The results obtained exhibited that the

proposed methods outperformed existing one-class classifiers in terms of ηF1 and F1

score due to the minimum variance embedding that was responsible for a reduction in

the dispersion of data.

Further, we discuss a summary of the contributions achieved in this thesis in Sec-

tion 6.1, followed by the possible future directions in Section 6.2.
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6.1 Summary of Contributions

We have achieved the objectives specified in Section 1.3 in this thesis by making

the following main contributions:

(1) Minimum Variance Embedded Auto-associative KRL-based Method for

OCC: We proposed the minimum variance embedded KRL-based autoencoder

(VAAKRL) for OCC. VAAKRL leverages the minimum variance information to

minimize the data dispersion of the target class and force the network output

weights to focus in regions of low variance. VAAKRL follows a single-layer archi-

tecture and uses a reconstruction-based approach to perform OCC. It follows the

idea that, since the model is trained solely on target class samples, the outliers

should have a high reconstruction error in comparison to target class samples.

Hence, the deviation in reconstruction error is used to define a threshold criterion

that decides the membership for the new samples. We conducted experiments

on 14 datasets and compared the results with 14 existing one-class classifiers.

VAAKRL achieved the highest ηF1 in comparison to the existing classifiers, with a

significant improvement of 6.9% over the existing non-kernel-based one-class clas-

sifiers. However, VAAKRL showed a slightly better ηF1 score in comparison to

the existing boundary-based and reconstruction-based KRL classifiers. To further

improve the KRL-based one-class classifier, we proposed a model by embedding

the minimum variance information in a multi-layer architecture.

(2) Minimum Variance Embedded Deep KRL-based Method for OCC: We

explored the effectiveness of variance minimization in a multi-layer architecture

by combining both the reconstruction-based and boundary-based frameworks in

a single architecture for OCC (DKRLVOC). The deep architecture of DKRLVOC

comprises of multiple sequentially stacked reconstruction-based layers and a final

boundary-based OCC layer. The reconstruction-based KRL layers are responsible

for reconstructing the essential information of the input data at the output layer

and learning an effective representation of the data. The final boundary-based

layer is responsible for performing OCC by learning a discrimination boundary

76



around the target class data. The distance between the samples is used to define a

threshold criteria, which further decides the membership of a new sample. We con-

ducted experiments on 14 small-size and 10 medium-size benchmark datasets and

compared the results with 14 existing one-class classifiers. DKRLVOC achieved

the highest ηF1 in comparison to the existing classifiers for both the small-size

and medium-size datasets, with a significant improvement of 4.97% for small-size

datasets and 6.9% for medium-size datasets against single-layer KRL-based classi-

fiers. Further for the small-size datasets, there was an improvement of 5.94% when

compared to the existing non-KRL-based classifiers. The success of DKRLVOC

can be attributed to the use of minimum variance embedding and the multiple

sequentially stacked KRL-based autoencoders. The minimum variance embedding

helped to minimize the data dispersion, and the KRL-based autoencoders helped

to learn the essential features from the input data.

(3) Application of DKRLVOC for the identification of Alzheimer’s and

Breast Cancer Diseases: We applied DKRLVOC for the identification of

Alzheimer’s and Breast Cancer diseases. For Alzheimer’s, it was observed that it

was more efficient to train the model using CN data, rather than AD data. Further,

it was observed that all features and cortical thickness are prominent measures for

the identification of Alzheimer’s from sMRI data. For both Alzheimer’s and Breast

Cancer, DKRLVOC performed better than the existing one-class classifiers, with

a significant improvement of 6.89% for Alzheimer’s and 5.82% for Breast Cancer

against non-KRL-based classifiers. It can be concluded that DKRLVOC is a better

alternative to the existing kernel-based one-class classifiers for the identification

of Alzheimer’s and Breast Cancer diseases.

6.2 Future Research Directions

We understand that our current work can be explored in the following future

directions:
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(1) Minimum Variance Embedded KRL-based OCC using machines-

teaching-machines paradigm:

Privileged information [98] and distillation [99] are two techniques that enable

machines to learn from other machines. Privileged information is additional in-

formation about the data which is available only during the time of training and

is absent at the test time. In distillation, a simple machine learns a complex task

by imitating the solution of a flexible machine. One future direction is to utilize

the paradigm to improve the proposed minimum variance embedded KRL-based

one-class classifiers.

(2) Minimum Variance Embedded KRL-based OCC to handle streaming

data in an online setting:

Online learning [100, 101] has attracted researchers in recent years due to its

capability to handle a high volume of streaming data with less computational

and storage costs. In online learning, a model is built based on the currently

available data, and then it is continuously updated as the next samples arrive for

training. The KRL-based one-class classifiers developed as part of my thesis work

can handle only stationary data. As most of the real-world problems deal with

streaming data, further research can be done to enable the proposed classifiers

in this thesis to handle streaming data in an online setting. This will enable the

classifiers to learn in a real-time environment where the data characteristics keep

changing over time.

(3) BatchEnsemble KRL-based one-class classifiers:

BatchEnsemble [102] is an ensemble method whose computational and memory

costs are significantly lower than the typical ensembles. Unlike traditional en-

sembles, BatchEnsemble is mini-batch friendly, where it is parallelizable across

devices like typical ensembles but also parallelizable within a device. A possible

future research direction is to utilize the BatchEnsemble mechanism in KRL-based

one-class classifiers for handling large-scale data.
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